Postoperative Cognitive Dysfunction after Cardiac Surgery

Wyoming Health Care Systems/University of Scranton
Nurse Anesthesia

Ashley Fidler Parkinson RN BSN SRNA
Objectives

- Review cardiovascular disease history
- Define Postoperative Cognitive Dysfunction (POCD)
- Identify possible risk factors associated with POCD
- Analyze potential mechanisms for POCD
- Examine interventions on improving cognitive functioning
- Discuss POCD future research needs
Cardiovascular Disease Statistics

- #1 health problem
- 70 million affected (34%)
- 25% of deaths (1/4 in U.S.)
- Leading cause of death
- Coronary heart disease
 - Most common type
Cardiac Surgery Background

- **Historical Dates:**
 - 1952
 - 1st open-cardiac procedure
 - 1953
 - Heart-lung machine
 - AKA - Cardiopulmonary Bypass (CPB)

- **Cardiac Surgery:**
 - Coronary artery bypass grafting (**CABG**)
 - Valves
 - Abnormalities
 - Transplantation
 - Open-heart
 - On-pump
 - **Off-pump**
 - AKA - Beating heart
“Grandpa was never the same after his operation!”
Postoperative Cognitive Dysfunction (POCD):

“A state of cerebral cognitive alterations following surgery and anesthesia that is characterized by impairment of attention, concentration, and memory that may have long-term implications.”
POCD: Significance

- Annoyance
- Social integration
- Loss of job
- Relationship issues
- Loss of independence
- Quality of life

- Poor outcomes
 - Longer hospital stay
 - Long-term facility admission
 - Increased mortality
 - Poor cognitive & functional recovery
Neuropsychological Testing

- **Immediate Memory:**
 - Digit Span test of the Wechsler Memory Scale-Revised (WMS-R)
 - Rey Auditory Verbal Learning Test
 - Visual Memory Span Test of the WMS-R

- **Learning & Recent Memory:**
 - Rey Auditory Verbal Learning Test

- **Attention & Psychomotor Speed:**
 - The Bourdon – Vos Test
 - The Trail Making Test parts A and B of the Halstead-Reitan Neuropsychological Battery
 - The Stroop Color and Word Test
 - The Symbol Digit Modalities Test

- **Verbal Fluency:**
 - Stroop Test

- **Assessing Mood:**
 - Amsterdam Mood States Questionnaire
Etiology

- Unclear
 - Genetic
 - Inflammation
 - Neurotransmitter function alteration
 - Stress response
 - Anesthesia
- Cardiopulmonary bypass (CPB) technique
 - Off-pump
 - On-pump
Etiology: Genetic

- Apolipoprotein E
 - ε4 allele
 - Alzheimer’s disease
 - Neurodegenerative disorders
- Phospholipases A2
 - Lowers mental state scores
- Interleukin-6
- C-reactive protein (CRP)
- Tumoral necrosis factor-alpha

CPB inflammatory response
Etiology: Inflammation

- **CPB → Inflammatory response:**
 - Contact activation
 - Aortic cross-clamp
 - Nonspecific activators
 - Surgical trauma
 - Blood loss
 - Transfusions

![Diagram showing the inflammatory response](image)

Pro-inflammatory mediators

- Cellular activation (Astrocytes, Microglia, PMN, Endothelial cells, Lymphocytes, ……)

Inflammatory mediators

- (IL-8, TNF-α, TGF-β, NO, Cyclooxygenase-2, Proteases, ……..)

POCD

- Impairment of Memory, Concentration, Language Comprehension, and Social Integration.

- Alzheimer’s disease

Sections:

- Background
- Etiology
- Risks
- Prevention
- Review Questions
Etiology: Stress

- **Stress response**
 - Increase cortisol
 - Increase catecholamines

- **High stress levels → Inhibit memory**

- **Altered hippocampal function**
 - Organizing
 - Forming
 - Storing

- **Surgery**
 - Immune mechanisms
 - Inflammatory cascade

Corticotropic-releasing factor (CRF) → Adrenocorticotropic hormone (ACTH) release → Adrenal gland → Cortisol
Etiology: Anesthesia

- Prolonged exposure
 - Gene expression
 - Brain synthesis
 - Cognitive function

- Sevoflurane ≠ POCD
Etiology: CPB Technique

- Cardiopulmonary Bypass (CPB) technique:
 - Off-pump
 - Immobilization
 - NO CPB
 - On-pump
 - Increases blood brain barrier permeability
 - Micro/Macroemboli
 - Duration
 - ≥ 114 minutes → Neurologic event
Risk Factors

- **Preoperative**
 - Age
 - Education
 - Previous Disease
 - Lower socioeconomic status

- **Intraoperative**
 - Embolization
 - Surgical procedure duration
 - Arterial pressure
 - Inflammation
 - Hyperglycemia
 - Temperature
 - Metabolic abnormalities
 - Anemia
 - Multiple transfusions

- **Postoperative**
 - Hypoxia
Preoperative Factors: Age

- Increased age
- Unknown mechanism
 - Atherosclerosis → Cardiovascular disease
 - Embolization
 - Vasculature alterations
 - Cerebral blood flow alterations
 - Pharmaceuticals (agents)
 - Cognitive function reduction
Preoperative Factors: Education

- **Protective effect**
- **Number of school years**
 - Cognitive reserve
 - Evaluation ability improvement
 - Increase neuronal homeostasis
 - Neuronal injury resistant
- **Unknown mechanism**
 - Education \rightarrow Increase neocortex synaptic density \rightarrow Increase neuronal communication \rightarrow Minimize cognitive & functional impairment S/S
Preoperative Factors: Previous Diseases

- Diabetes Mellitus (DM)
 - Cerebral blood flow alteration
- Systemic Arterial Hypertension (SAH)
 - Cerebral blood flow alteration
 - Cerebral artery hardening
 - Atherosclerotic disease
- Chronic Renal Failure (CRF)
- Atrial fibrillation
- Left ventricular ejection fraction (EF) ≤ 30%
Intraoperative Factors: Embolization

- Emboli formation:
 - Aortic wall
 - Aggregated platelets
 - Air bubbles
 - Heart chambers

- Micro vs. Macroemboli
 - Microemboli → POCD
 - Gaseous microemboli
 - Most probable source
 - Origin:
 - 1. Oxygenator
 - 2. Cooling process
 - 3. Opening heart chambers
Intraoperative Factors: Surgical Procedure Duration

- Cardiopulmonary bypass (CPB)
 - Greater microvascular obstructions

- Surgical procedure duration
 - Greater microvascular obstructions
Intraoperative Factors: Arterial Pressure

- Hypertension
 - Neurological impairment
- Hypotension
 - Neurological impairment
- Mean arterial pressure (MAP)
 - Maintain
Intraoperative Factors: Hyperglycemia

- Hyperglycemia
 - Blood sugar > 200 mg/dL
 - Cerebral metabolism
 - Anaerobic metabolism
 - Increase lactate production
 - Ischemic process
 - Increase excitatory amino acids
 - Inflammatory response
 - Corticosteroid production

Alteration in:
- Glycolysis
- Protein Synthesis
- Homeostasis
- Enzymatic Functions
- Other cell processes
Intraoperative Factors: Temperature

- **Hyperthermia**
 - Neurotransmitter release
 - Toxic amounts
 - Free radical release
 - Increase blood-brain barrier permeability
 - Ischemic area enlargement
 - Increase ischemic depolarization
 - Increase morbidity & mortality rates

- **Hypothermia**
 - Reduces energy consumption \rightarrow cell integrity
 - Improves cerebral & myocardial tolerance

- **Rewarming**
 - Speed \rightarrow jugular desaturation
Postoperative Factors: Hypoxia

- Cerebral hypoxia
 - Hippocampus alterations
 - CPB consequence
Prevention

- **Assessment:**
 - Hemodynamic stability

- **Temperature**
 - Hypothermia
 - Slow rewarming

- **Minimal surgical invasiveness**

- **Mechanical devices**
 - Intra-aortic filter
 - Ultrafiltration
 - Leukocyte depletion
Pharmacotherapy

- **Aprotinin**
 - Serine protease inhibitor
 - Anti-inflammatory
- **Heparin**
 - Decrease inflammatory response
- **Barbiturates**
 - Neuroprotection
 - Controversial

- **Xenon**
 - Neuroprotection
 - N-methyl-D-aspartate (NMDA) antagonist

- **Steroids**
 - Inhibit ischemia-reperfusion injury
 - Anti-inflammatory
Future Research

- Quality of life
- Intervention strategies
- Reverse impact/incidence
- Treatment strategies
- Core neuropsychological testing
- Volatile anesthetics
1. Preoperative predisposing risk factors for POCD include all the following EXCEPT:
 a. Increased age
 b. Previous diseases
 c. Increased education level
 d. Diabetes

2. The use of the anesthetic gas, Sevoflurane, has been shown to increase the incidence of POCD.
 True
 False

3. Cardiopulmonary bypass (CPB) time greater than or equal to _____ minutes significantly increases the risk of a neurologic event.
 114
The End!

Situation where the "5 second" rule doesn't apply...

It's still good!

Heart Surgery.
References

References

References

Biological valve (human or porcine)

Mechanical valve