A variety of articles have consistently referenced the “low-Dye” arch taping technique and attributed its success to its effectiveness in controlling excessive foot pronation. Few research articles have attempted to substantiate this hypothesis and to date, little evidence supports the “pronation-control” theory of why arch taping has been helpful in managing these cases.

Some research suggests the plantar fascia experiences increased strain (elongation) of approximately 6 to 12 percent, particularly during midstance through terminal stance of gait. Tensile stress associated with this strain has been estimated to peak around 1 - 1.5 times body weight during terminal stance and seems related to the windlass effect of the plantar fascia (1, 2).

A definition of windlass includes the following: “Any of numerous hauling or lifting machines consisting essentially of a horizontal cylinder turned by a crank or a motor so that a line attached to the load is wound around the cylinder.” (www.answers.com/topic/windlass)

In this definition the cylinder represents the convex shape of the metatarsal head, the crank represents the proximal phalanx and the line represents the plantar fascia. Figure 1 identifies the anatomical example of the windlass mechanism within the foot.

As the proximal phalanx dorsiflexes during terminal stance, the plantar fascia wraps around the metatarsal head and produces tensile force within the plantar fascia. This is displayed in Figure 2.
Since plantar fasciitis seems to develop from repetitive and excessive tensile forces during stance, it might seem reasonable to more directly control or minimize these tensile forces. The rational of the taping technique referenced in this article is based on the same concept of a windlass effect but acting through the tape. The emphasis of this taping technique suggests that the direction and placement of the tape is important in order to reduce the strain on the plantar fascia.

The tape used was multi-purpose polyethylene coated cloth tape (47mm, Tyco, Norwood, Mass.) with natural rubber based adhesive. A key element for tape application is to closely follow the anatomical alignment of the plantar fascia as much as possible. This includes aligning the longitudinal tape strip in the same direction as the plantar fascia with emphasis to cover the convex surfaces of the metatarsal heads as indicated in Figure 3.

Extending the tape over the convex shaped metatarsal heads ensures that the tape can function with its own windlass effect as it is anchored under the metatarsal heads from weight bearing pressure and as the tape wraps around the posterior heel (3,4). Previous descriptions in the literature of the low-Dye technique concentrated on tape strips applied from medial to lateral metatarsals and not extending over the metatarsal heads.

Figures 4 and 5 show the plantar and sagittal views of the completed tape procedure. (See references by Hunt et al. (3,4) for a full description of the taping procedure.)

With plantar fasciitis, the main damaging force seems to occur with increased tension during weight bearing as the arch collapses during the first part of stance and also during terminal stance when the heel is off the ground.

Controlling excessive pronation during the first part of stance has been a focus of many of the articles describing arch taping as a viable treatment option. However, pronation control options would appear less effective as the heel leaves the ground during terminal stance. Here is when it might seem appropriate to consider a possible windlass effect produced by the tape. The combination of the tape controlling elongation of the foot during the first part of stance and the windlass effect of the tape during terminal stance may have a net result of reducing tension within the plantar fascia. Figure 6 graphically demonstrates the possible effects of arch taping for the treatment of plantar fasciitis.

The hypothesis for the effectiveness of this taping technique is based on the
premise that a windlass effect occurs within the tape. If a windlass effect occurs, then pressure would increase under the tape on the posterior calcaneus. To investigate this hypothesis the authors conducted clinical trials to measure posterior calcaneal pressure during a walking gait of eight normal subjects between ages of eight and 25. Miniature pressure sensors were used to measure the pressure at the tape and posterior calcaneus interface (Tactilus® Free Form Sensor System, Sensor Products LLC, Madison, N.J.).

Findings indicated that peak posterior heel pressure significantly increased to 35.3 psi at approximately 70 percent into stance phase compared to a non-taped condition. These results seem to support the hypothesis that a windlass effect does occur in this taping technique and may explain the positive clinical outcomes for plantar fasciitis.

The emphasis on mechanical control for this taping technique is unique in that its focus is to control elongation of the foot and plantar fascia rather than directly control pronation. The windlass effect acting through the tape seems a plausible explanation for the positive clinical outcomes based on the pressure studies during gait.

References
1. Gefen, A. The in vivo elastic properties of the plantar fascia during the contact phase of walking. Foot Ankle Int 2003, 24(3):238-244.

Gary C. Hunt, PT, MA, DPT, OCS, C.Ped., has 37 years of clinical experience with an emphasis in orthopedics. He received his master’s degree from the University of Maryland, his doctorate degree from Creighton University and his pedorthic certification in May 2002. He has held faculty positions at Southwest Baptist University, Franklin Pierce College and Missouri State University. He has published in professional journals including Physical Therapy and The Foot and has also contributed to a variety of texts including co-editing Physical Therapy of the Foot and Ankle published by Churchill Livingstone.

Scott W. Wallentine, PT, DPT, has 13 years of experience teaching and practicing in the areas of biomechanics and orthopedics. He received his doctorate degree from Creighton University, held a faculty position at Winston–Salem State University and is currently at Missouri State University. He has published in professional journals including Physiotherapy Theory and Practice.