Appropriate Patient Preparation for Renal Replacement Therapy

Executive Summary

October 2002
Appropriate Patient Preparation for Renal Replacement Therapy

Executive Summary

October 2002
WORKING GROUP

Renal Physicians Association

W. Kline Bolton, MD,
Working Group Chair
University of Virginia School of Medicine
Charlottesville, VA

William F. Owen, Jr., MD
President, RPA

Duke University School of Medicine
Durham, NC

Baxter Healthcare Corp.
McGaw Park, IL

Dale Singer, MHA
Executive Director, RPA

Content Experts

Jack Coburn, MD
UCLA School of Medicine
West Los Angeles V.A. Healthcare Center
West Los Angeles, CA

William Haley, MD
Mayo Clinic
Jacksonville, FL

Annamaria Kausz, MD
New England Medical Center
Boston, MA

Adeera Levin, MD
St. Paul’s Hospital
Vancouver, BC

William Mitch, MD
University of Texas Medical Branch
Galveston, TX

Patricia Painter, PhD
University of California, San Francisco
San Francisco, CA

Michael Rocco, MD, MSCE
Wake Forest University School of Medicine
Winston-Salem, NC

Association Representatives

Carolyn Atkins, RN, BS, CCTC
National Kidney Foundation
Medical City Dallas Hospital
Dallas, TX

Shelley Clark, RN
National Renal Administrators Association
FMC North Roanoke Dialysis
Roanoke, VA

Paul Eggers, PhD
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Bethesda, MD

Lori Fedje, RD, LD
NKF Council on Renal Nutrition
Pacific Northwest Renal Services
Portland, OR

Richard Goldman, MD
Renal Physicians Association
Renal Medicine Associates, Emeritus
Albuquerque, NM

Joel Greer, PhD
Centers for Medicare and Medicaid Services
Baltimore, MD

Richard Lafayette, MD
American Society of Nephrology
Stanford University School of Medicine
Stanford, CA
Appropriate Patient Preparation for Renal Replacement Therapy

Eugene Z. Oddone, MD
American College of Physicians – American Society of Internal Medicine
Durham VA Medical Center
Durham, NC

Victoria Norwood, MD
American Society of Pediatric Nephrology
University of Virginia
Charlottesville, VA

Paul M. Palevsky, MD
Forum of ESRD Networks
University of Pittsburgh School of Medicine
VA Pittsburgh Health Care System
Pittsburgh, PA

Sandy Peckens, MSW
NKF Council of Nephrology Social Workers
Merrimack Valley Nephrology
Methuen, MA

Venkateswara Rao, MD
American Society of Transplantation
Hennepin County Medical Center
Minneapolis, MN

Charlotte Thomas Hawkins, PhD, RN, CNN
American Nephrology Nurses Association
Rutgers, The State University of New Jersey
Burlington, NJ

Joseph White
American Association of Kidney Patients

Methodologists

David B. Matchar, MD, FACP
Director, Duke Center for Clinical Health Policy Research and
Co-Director, Duke Evidence-based Practice Center
Durham, NC

Douglas C. McCrory, MD, MHS
Co-Director Duke Evidence-based Practice Center
Durham, NC

Joseph A. Coladonato, MD
Duke Institute of Renal Outcomes Research & Health Policy
Durham, NC

Preston S. Klassen, MD, MHS
Duke Institute of Renal Outcomes Research & Health Policy
Durham, NC

Meenal B. Patwardhan, MD, MHSA
Duke Center for Clinical Health Policy Research and Duke
Evidence-based Practice Center
Durham, NC

Donal N. Reddan, MD, MHS
Duke Institute of Renal Outcomes Research & Health Policy
Durham, NC

Olivier T. Rutschmann, MD, MPH
Duke Center for Clinical Health Policy Research
Durham, NC

William S. Yancy, Jr., MD, MHS
Duke University Medical Center
Durham, NC

Medical Editor

Rebecca N. Gray, DPhil
Duke Evidence-based Practice Center
Durham, NC

Project Manager and Editor

Emily G. Shurr, MA
Duke Evidence-based Practice Center
Durham, NC
Abbreviations Used

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
<tr>
<td>ACE</td>
<td>Angiotensin converting enzyme</td>
</tr>
<tr>
<td>AHRQ</td>
<td>Agency for Healthcare Research and Quality</td>
</tr>
<tr>
<td>AMA</td>
<td>American Medical Association</td>
</tr>
<tr>
<td>ARB</td>
<td>Angiotensin II Receptor Blocker</td>
</tr>
<tr>
<td>ACVD</td>
<td>Atherosclerotic cardiovascular disease</td>
</tr>
<tr>
<td>ASN</td>
<td>American Society of Nephrology</td>
</tr>
<tr>
<td>ATP-III</td>
<td>National Cholesterol Education Task Force Adult Treatment Panel - III</td>
</tr>
<tr>
<td>AV</td>
<td>Arteriovenous</td>
</tr>
<tr>
<td>BCG</td>
<td>Bromo-Cresol-Green</td>
</tr>
<tr>
<td>BP</td>
<td>Blood pressure</td>
</tr>
<tr>
<td>BUN</td>
<td>Blood urea nitrogen</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>CHD</td>
<td>Coronary heart disease</td>
</tr>
<tr>
<td>C-HPTH</td>
<td>Carboxyl-terminal parathyroid hormone</td>
</tr>
<tr>
<td>CKD</td>
<td>Chronic kidney disease</td>
</tr>
<tr>
<td>CME</td>
<td>Continuing medical education</td>
</tr>
<tr>
<td>CMS</td>
<td>Centers for Medicare and Medicaid Services</td>
</tr>
<tr>
<td>CPG</td>
<td>Clinical practice guideline</td>
</tr>
<tr>
<td>CPM</td>
<td>Clinical performance measure</td>
</tr>
<tr>
<td>CPT</td>
<td>Current procedure terminology</td>
</tr>
<tr>
<td>CrCl</td>
<td>Creatinine clearance</td>
</tr>
<tr>
<td>CQI</td>
<td>Continuous quality improvement</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>dL</td>
<td>Deciliter</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EPC</td>
<td>Evidence-based Practice Center</td>
</tr>
<tr>
<td>ESRD</td>
<td>End-stage renal disease</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GAP</td>
<td>Guidelines Applied to Practice</td>
</tr>
<tr>
<td>GFR</td>
<td>Glomerular filtration rate</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>Hb</td>
<td>Hemoglobin</td>
</tr>
<tr>
<td>Hct</td>
<td>Hematocrit</td>
</tr>
<tr>
<td>HDL</td>
<td>High-density lipoprotein</td>
</tr>
<tr>
<td>HPTH</td>
<td>Hyperparathyroidism</td>
</tr>
<tr>
<td>ICD-9</td>
<td>International Classification of Diseases, Ninth Revision</td>
</tr>
<tr>
<td>iPTH</td>
<td>Immunoreactive parathyroid hormone</td>
</tr>
<tr>
<td>JNC VI</td>
<td>Sixth Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure</td>
</tr>
<tr>
<td>K/DOQI</td>
<td>Kidney Disease Outcomes Quality Initiative</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>LDL</td>
<td>Low-density lipoprotein</td>
</tr>
<tr>
<td>LPD</td>
<td>Low-protein diet</td>
</tr>
<tr>
<td>LVH</td>
<td>Left ventricular hypertrophy</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>mcg</td>
<td>Microgram</td>
</tr>
<tr>
<td>MDRD</td>
<td>Modification of Diet in Renal Disease</td>
</tr>
<tr>
<td>mEq</td>
<td>Milliequivalents</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>MedPAC</td>
<td>Medicare Payment Advisory Commission</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm Hg</td>
<td>Millimeters of mercury</td>
</tr>
<tr>
<td>mmol</td>
<td>Millimoles</td>
</tr>
<tr>
<td>NHANES</td>
<td>National Health and Nutrition Examination Survey</td>
</tr>
<tr>
<td>NIDDK</td>
<td>National Institute of Diabetes and Digestive and Kidney Diseases</td>
</tr>
<tr>
<td>NKF</td>
<td>National Kidney Foundation</td>
</tr>
<tr>
<td>OCSQ</td>
<td>Office of Clinical Standards and Quality</td>
</tr>
<tr>
<td>PAERI</td>
<td>Prevalence of Anemia in Patients with Early Renal Insufficiency</td>
</tr>
<tr>
<td>PD</td>
<td>Peritoneal dialysis</td>
</tr>
<tr>
<td>PEAC</td>
<td>Practice Expense Advisory Committee</td>
</tr>
<tr>
<td>pg</td>
<td>Picogram</td>
</tr>
<tr>
<td>PTH</td>
<td>Parathyroid hormone</td>
</tr>
<tr>
<td>QALY</td>
<td>Quality Adjusted Life Year</td>
</tr>
<tr>
<td>RBC</td>
<td>Red blood cell</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized controlled trial</td>
</tr>
<tr>
<td>RPA</td>
<td>Renal Physicians Association</td>
</tr>
<tr>
<td>RRT</td>
<td>Renal replacement therapy</td>
</tr>
<tr>
<td>RUC</td>
<td>Relative Value Update Committee</td>
</tr>
<tr>
<td>Scr</td>
<td>Serum creatinine</td>
</tr>
<tr>
<td>SGA</td>
<td>Subjective Global Assessment</td>
</tr>
<tr>
<td>TIBC</td>
<td>Total iron binding capacity</td>
</tr>
<tr>
<td>TLC</td>
<td>Therapeutic lifestyle changes</td>
</tr>
<tr>
<td>TSAT</td>
<td>Transferrin saturation</td>
</tr>
<tr>
<td>UNOS</td>
<td>United Network for Organ Sharing</td>
</tr>
<tr>
<td>VLDL</td>
<td>Very low-density lipoprotein</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
ABOUT RPA

RPA . . . the Advocate for Excellence in Nephrology Practice

Organized in 1973, the Renal Physicians Association (RPA) is a national medical specialty association with a membership comprised of healthcare providers in the subspecialty area of internal medicine known as nephrology. RPA represents and serves nephrologists, practice managers, advanced practice nurses and physician assistants in their pursuit of quality renal health care. RPA’s members are engaged in diverse activities including the practice of medicine, teaching, research and all are committed to improving the care of patients with renal disease and related disorders.

RPA’s Core Values:

1. Commitment to high quality, cost effective, ethical renal care
2. Promotion of the interests and professional status of the discipline of nephrology
3. Promotion of the leadership role of the nephrology profession in defining policy which influences renal care
4. Recognition of and respect for the multidisciplinary nature of renal care

RPA represents nephrologists and is recognized by national leaders as the organization that sets the standards for delivering value and accountability for quality renal patient care. The Association’s long-standing advocacy program has fostered a close working relationship with federal agencies and other organizations involved in health care policy development and implementation. RPA regularly meets with and advises key government officials as well as decision makers in private sector organizations to stay apprised of legislative and regulatory issues and options in order to act on behalf of our members to protect their ability to practice medicine with minimal regulatory burdens and receive fair compensation.

RPA includes advanced practice nurses, physician assistants and practice managers who, as part of the renal care team, conduct important functions within the nephrology practice. Volunteers representing each of these group’s special interests communicate with RPA leaders and staff about how to best address issues that arise.

RPA addresses Medicare, Medicaid and private sector health care financing issues. RPA leaders meet with representatives of the Centers for Medicare and Medicaid Services (CMS, formerly the Health Care Financing Administration) and the carrier medical directors to address concerns about discrepancies in local carrier policies, documentation requirements, and trends in payment denials.

RPA monitors the Medicare Payment Advisory Commission (MedPAC) as well as Congressional health care financing activities and serves as a resource on renal-related issues. As an active participant on the American Medical Association (AMA) Relative Value Update Committee (RUC), Practice Expense Advisory Committee (PEAC) and Current Procedure Terminology (CPT) Editorial Panel, RPA works to assure that work values for nephrology services are appropriately determined and that CPT codes accurately reflect nephrology clinical practice.

RPA tracks problems related to reimbursement for nephrology services and payment denials experienced by members to determine trends and identify areas where the Association needs to take action.

RPA is committed to ensuring quality care for patients
with renal disease. The Association works closely with CMS’ Office of Clinical Standards and Quality (OCSQ), the Forum of ESRD Networks and the Agency for Healthcare Research and Quality (AHRQ) to develop policies and procedures that result in an effective quality assessment and improvement program.

RPA develops clinical practice guidelines and performance measures to promote physician accountability. RPA also works to develop documentation tools (e.g. Medical Director’s checklist, ICD-9 coding cards, Evaluation and Management documentation charts) to help nephrologists appropriately track the services delivered to patients. The Association coordinates these efforts with other organized medicine groups as well as with AHRQ and CMS.

Patient safety is an important part of the RPA physician-patient equation. Through RPA’s efforts in quality and accountability, patient safety has been highlighted an important program initiative.

RPA promotes funding for biomedical research on kidney disease by the National Institutes of Health, specifically the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). RPA supports medical treatment effectiveness and outcomes assessment research relating to kidney disease and advocates funding for these initiatives through AHRQ. RPA has been instrumental in garnering support for the creation, implementation and maintenance of the U.S. Renal Data System.

For more information about RPA, a list of RPA’s publications and to obtain membership information visit www.renalmd.org or call the RPA office at 301-468-3515.

Acknowledgment

The RPA wishes to thank Ortho Biotech for their generous support, provided through an education grant to fund the development of this guideline.

The following organizations have endorsed the guideline recommendations: Renal Physicians Association, American Nephrology Nurses Association, American Association of Kidney Patients, and the Forum of End-Stage Renal Disease Networks.
This document is a summary of the Renal Physicians Association (RPA) Clinical Practice Guideline (CPG) on Appropriate Patient Preparation for Renal Replacement Therapy (RRT). This is RPA's third CPG.

To develop this document, the RPA convened a “Working Group” consisting of clinical experts and stakeholders. Participants were nominated by national organizations representing practitioners, patients, administrators, insurers, and Federal research funders. The Working Group was supported by a team of methodologists and nephrologists from the Duke Center for Clinical Health Policy Research. The foundation of the CPG and CPMs is a comprehensive review of the literature, “Evidence Report: Appropriate Preparation for Renal Replacement Therapy,” as well as expert consensus on the most effective interventions. The evidence report may be viewed and downloaded from the RPA web site, www.renalmd.org.

The patient population at the center of the RPA’s CPG is the patient subset referred to as “advanced CKD,” a shorthand term for the more specific designation of those patients whose clinical condition is categorized as advanced chronic kidney disease (CKD) stages 4 and 5, but not on RRT. This corresponds to a glomerular filtration rate (GFR) of less than or equal to 30 mL/min/1.73 m², when kidney function is at a high risk of progression.

Natural history data indicate that when the vast majority of patients reach stage 4 they will likely progress and require RRT. Prior to stage 4, the focus of diagnosis and treatment of CKD is on slowing progression and identifying and managing comorbidities. As the patient progresses to stages 4 and 5, advanced CKD, the focus shifts to managing complex metabolic disturbances and preparing the patient for RRT (dialysis or transplantation). Proactive preparation for RRT is recommended to facilitate the transition and reduce the burden of clinical risk factors known to be associated with worse outcomes in end-stage renal disease patients.

The recommendations contained in the CPG are intended to provide clinicians with practical guidance for the care of individuals with advanced CKD not yet requiring RRT. Since these patients have complex needs, the CPG is targeted to nephrologists and generalists with a special interest in advanced CKD patients. The objective of this document is to enhance, but not substitute for, the provider’s ability to care for patients based on the best available scientific evidence. The CPMs that have been developed on the basis of the recommendations in the CPG are not intended for physician comparison, survey or population purposes, instead, they are meant to facilitate individual physician quality improvement.

The guideline is applicable to the population of adult patients (18 years of age and older) with advanced CKD not yet on RRT who are expected to progress and require RRT within 6 to 18 months. This CPG is not intended for use in children and adolescents.

The RPA has identified seven particularly important goals of care to be addressed by this CPG:

- Optimal management of anemia
- Prevention of hyperparathyroidism, hyperphosphatemia, hypocalcemia, and metabolic bone disease
- Control of blood pressure
- Maintenance of adequate nutrition
- Managing qualitative and quantitative lipid disorders
- Timing of the initiation of RRT and vascular access
- Counseling for choices of RRT, patient rehabilitation, and psychosocial and economic preparation.

A summary of the guidelines is presented on the following pages. To obtain the complete guideline publication, please contact the RPA office.
ANEMIA GUIDELINES

Monitoring anemia regularly
If a patient has GFR ≤ 30 mL/min/1.73 m², then s/he should have his/her hemoglobin checked at least every three months. (Grade C)

Workup of anemia
If a patient has GFR ≤ 30 mL/min/1.73 m² and a hemoglobin < 12 g/dL if a woman, and < 13 g/dL if a man, then s/he should undergo a complete work-up for anemia including iron studies. (Grade B)

Treating iron deficiency
If a patient has GFR ≤ 30 mL/min/1.73 m², and if iron deficiency is identified, then s/he should be treated. (Grade C)

Treatment with erythropoietin or erythropoietin analogue
If a patient has GFR ≤ 30 mL/min/1.73 m², and remains anemic despite appropriate evaluation and iron therapy, then s/he should be treated with erythropoietin or analogue. (Grade B)

Monitoring blood pressure for those receiving erythropoietin or erythropoietin analogue
If a patient has GFR ≤ 30 mL/min/1.73 m², and is receiving erythropoietin or analogue, then s/he should have his/her blood pressure checked with each dose. (Grade C)

HYPERTENSION GUIDELINES

Monitoring blood pressure
If a patient has GFR ≤ 30 mL/min/1.73 m², then his/her blood pressure should be checked with every clinic visit (Grade A), which should be at least every three months. (Grade C)

Responding to elevated blood pressure
If a patient has GFR ≤ 30 mL/min/1.73 m², and if blood pressure is determined to be elevated (systolic > 130 mmHg OR diastolic > 80 mmHg), then s/he should receive encouragement and instruction to initiate therapeutic lifestyle changes (Grade C) and s/he should receive intensified antihypertensive therapy. (Grade B)

Treating with ACE inhibitors and ARBs
If a patient has GFR ≤ 30mL/min/1.73 m² and hypertension, then s/he should receive an ACE inhibitor or an ARB as a first-line agent. (Grade C)
BONE DISEASE GUIDELINES

Monitoring for metabolic acidosis
If a patient has GFR ≤ 30 mL/min/1.73 m² then s/he should be monitored for acidosis (serum bicarbonate concentration) at least every three months. (Grade C)

Correcting metabolic acidosis
If a patient has a GFR ≤ 30 mL/min/1.73 m² then his/her chronic metabolic acidosis should be corrected to a serum bicarbonate ≥ 22 mmol/L. (Grade C)

Monitoring calcium, phosphorus, and iPTH
If a patient has a GFR ≤ 30 mL/min/1.73 m², then s/he should have his/her serum calcium and phosphorus measured at least every three months, and iPTH levels measured at least once, (Grade B) AND if calcium and/or phosphorus levels are abnormal, iPTH should be monitored at least every three months. (Grade C)

Treating HPTH and/or hyperphosphatemia
If a patient has GFR ≤ 30 mL/min/1.73 m², and if iPTH > 100 pg/mL (or > 1.5 times the upper limit of normal for each assay used), OR serum phosphorus > 4.5 mg/dL then s/he should be placed on a low phosphorus diet (< 800-1000 mg/day) for one month, and phosphorus levels should be re-checked, regardless of phosphorus or iPTH levels. (Note: a low phosphorus diet implies a low protein diet.) If serum phosphorus is still > 4.5 mg/dL, then phosphate binder should be started (Grade B) AND iPTH levels should be monitored every three months following the initiation of therapy, whether phosphorus is controlled or not. (Grade B)

Managing decreased vitamin D levels (vitamin D insufficiency)
If a patient has GFR ≤ 30 mL/min/1.73 m² and if iPTH > 100 pg/mL (or 1.5 times the upper limit of normal for each assay used), then measure 25(OH) vitamin D; AND if 25(OH) vitamin D is decreased (serum levels < 30 ng/mL) then s/he should receive vitamin D₂ 50,000 units orally every month for 6 months. (Grade C)

Managing hypocalcemia
If a patient has GFR ≤ 30 mL/min/1.73 m² and corrected serum calcium is < 8.5 mg/dL (using a normal reference range of 8.5-10.5 mg/dL) after phosphorus issues are addressed, then s/he should receive elemental calcium 1g/day between meals or at bedtime. (Grade C)

Treating refractory HPTH
If a patient has GFR ≤ 30 mL/min/1.73 m² and iPTH remains > 100 pg/mL (or > 1.5 times the upper limit of normal for each assay used) after 3 months of previously recommended interventions, then s/he should receive oral vitamin D therapy with 0.25 mcg/day of calcitriol⁴,⁵ (Grade C) or alfacalcidol 0.25 mcg/day, to a maximum of 0.5 mcg/day.⁶
NUTRITION GUIDELINES

Monitoring nutritional status regularly
If a patient has GFR ≤ 30 mL/min/1.73 m², then his/her nutritional status should be monitored by measuring body weight and serum albumin every three months. (Grade B)

Managing malnutrition
If a patient has GFR ≤ 30 mL/min/1.73 m², and if body weight decreases unintentionally by more than 5% or serum albumin decreases by more than 0.3 g/dL or is < 4.0 g/dL (for Bromo-Cresol-Green assay, or 3.7 for Bromo-Cresol-Purple assay), then s/he should be evaluated for causes. If other causes are ruled out and cause is therefore determined to be CKD, then s/he should receive diet assessment and counseling by qualified and experienced personnel. (Grade C)

Dietary recommendations should include:
1. Energy intake > 30-35 kcal/kg body weight/day.
2. Protein intake ≥ 0.6 g/kg body weight/day.

Initiating RRT based on nutritional status
If a patient has GFR < 20 mL/min/1.73 m², with evidence of malnutrition that does not respond to nutritional intervention in the absence of other causes of malnutrition, then s/he should begin RRT. (Grade C)

DYSLIPIDEMIA GUIDELINES

Monitoring for dyslipidemias
If a patient has GFR ≤ 30 mL/min/1.73 m², then she/he should be monitored for dyslipidemias; measurements should include triglycerides, LDL, HDL, and total cholesterol. (Grade B)

Evaluation for secondary causes
If a patient has GFR ≤ 30 mL/min/1.73 m², and has dyslipidemia, then s/he should be evaluated for secondary causes including comorbid conditions and certain medications. (Grade C)

Treatment of dyslipidemias
If a patient has GFR ≤ 30 mL/min/1.73 m², LDL should be targeted to < 100 mg/dL; non-HDL cholesterol should be targeted to < 130 mg/dL; and fasting triglycerides ≥ 500 mg/dL should be treated. (Grade C)
COUNSELING AND REHABILITATION GUIDELINES

Exercise
If a patient has GFR ≤ 30 mL/min/1.73 m² and does not engage in regular physical activity, then s/he should receive counseling and encouragement to increase physical activity. If a patient is unable to walk or unable to increase fully mobile physical activity, then s/he should be referred to physical therapy or cardiac rehabilitation. (Grade B)

Evaluation, education and encouragement
If a patient has GFR ≤ 30 mL/min/1.73 m², then s/he should receive structured education regarding preparation for RRT. (Grade C)

Employment counseling
If a patient has GFR ≤ 30 mL/min/1.73 m² then s/he should be encouraged to maintain employment and be referred to vocational counseling per his/her preference. (Grade C)

TIMING GUIDELINES

Early counseling about modality of RRT.
If a patient has GFR ≤ 30 mL/min/1.73 m², modality of RRT should be discussed with him/her. (Grade B)

GFR as a guide to RRT timing
No recommendation can be made for initiating RRT based solely on a specific level of GFR. (Grade B)

Early referral for transplant evaluation
If a patient has GFR ≤ 30 mL/min/1.73 m² and is willing to have a renal transplant, then s/he should receive a transplant evaluation (Grade B), unless s/he has an unacceptable level of surgical risk or does not satisfy the United Network for Organ Sharing (UNOS) Ethics Committee criteria for transplant candidacy.

Preservation of veins for vascular access
If a patient has GFR ≤ 30 mL/min/1.73 m² and it has been determined that s/he will receive hemodialysis, veins suitable for placement of vascular access should be preserved. (Grade C)

Timing for vascular access placement
If a patient has GFR ≤ 30 mL/min/1.73 m², and it has been determined that s/he will receive hemodialysis, then s/he should be referred for surgery to attempt construction of a primary AV fistula. (Grade C)
References

