Does One Dose Fit All?
Antibiotic Dosing in Special Populations

Julie Ann Justo, PharmD, MS, BCPS, AAHIVP
Assistant Professor
South Carolina College of Pharmacy, USC Campus
Infectious Diseases Clinical Specialist
Palmetto Health Richland

Objectives (Pharmacist Track)
• Describe how pharmacokinetics may be altered in certain patient populations
• Predict how pharmacokinetic alterations may affect antibiotic exposure, efficacy, and toxicity
• Review current strategies to dose antibiotics in special populations (e.g. obese, critically-ill)

Objectives (Pharmacy Technician Track)
• List the special patient populations where alternative antibiotic dosing may be required
• Describe how antibiotic exposure may be altered in special populations
• Review current strategies to dose antibiotics in special populations (e.g. obese, critically-ill)

Current Dosing Practices

One Standard Dose OR A little, A bit more, A lot…

Dosing Strategies
• Fixed Dosing
 • Majority of antiinfectives
 • Dosage adjustment for renal impairment often required
• Weight-Based Dosing
 • 21% (36/175) of weight-based drugs
 • Dosage adjustment for renal impairment in 83.3% (30/36)
• Body Surface Area-Based Dosing
 • 0% of antiinfectives (but 85% of antineoplastics)

Disclosure
I have a vested interest in or affiliation with the following companies or organizations
• Cempra Pharmaceuticals: Advisory Board Member

Optimal Antibiotic Dosing

- Based on specific pharmacokinetic-pharmacodynamic (PK-PD) target of bug-drug combination
 - $C_{\text{max}}/\text{MIC}$
 - AUC/MIC
 - $\%T>MIC$

Target PK-PD Index for Antibiotic Activity by Drug Class

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>$C_{\text{max}}/\text{MIC}$</th>
<th>AUC/MIC</th>
<th>$%T>MIC$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides</td>
<td>Aminoglycosides</td>
<td></td>
<td>Beta-lactams</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>Fluoroquinolones</td>
<td></td>
<td>Penicillins</td>
</tr>
<tr>
<td>Cyclic lipopeptides</td>
<td>Glycopeptides</td>
<td></td>
<td>Cephalosporins</td>
</tr>
<tr>
<td>(daptomycin)</td>
<td>(vancomycin)</td>
<td></td>
<td>Carbapenems</td>
</tr>
<tr>
<td>Oxa/Alloquinolones</td>
<td>(linezolid)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrolides</td>
<td>Polymyxins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxazolidinones</td>
<td>Penicillins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(linezolid)</td>
<td>Cephalosporins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mcrolides</td>
<td>Carbapenems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Therapeutic Index

Example: Time-dependent bacterial killing of cefepime

Pharmacokinetic Alterations in Special Populations

Obesity

- Definition per the World Health Organization, WHO:

 Body Mass Index (BMI) = Weight in kg / (Height in m)2

<table>
<thead>
<tr>
<th>BMI Classification</th>
<th>BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underweight</td>
<td>< 18.5</td>
</tr>
<tr>
<td>Normal</td>
<td>18.5 – 24.9</td>
</tr>
<tr>
<td>Overweight</td>
<td>25.0 – 29.9</td>
</tr>
<tr>
<td>Obese</td>
<td>≥ 30.0</td>
</tr>
<tr>
<td>Obese Class I</td>
<td>30.0 – 34.9</td>
</tr>
<tr>
<td>Obese Class II</td>
<td>35.0 – 39.9</td>
</tr>
<tr>
<td>Obese Class III</td>
<td>≥ 40.0</td>
</tr>
</tbody>
</table>

Prevalence of obesity (%)

- World Health Organization, 2013
- Accessed February 13, 2014
- https://www.who.int/mediacentre/factsheets/fs311/en/

Prevalence* of Self-Reported Obesity Among U.S. Adults by State and Territory, BRFSS, 2011

*Prevalence estimates reflect BRFSS methodological changes started in 2011. These estimates should not be compared to prevalence estimates before 2011.

Source: Behavioral Risk Factor Surveillance System, CDC.

Prevalence* of Self-Reported Obesity Among U.S. Adults by State and Territory, BRFSS, 2012

*Prevalence estimates reflect BRFSS methodological changes started in 2011. These estimates should not be compared to prevalence estimates before 2011.

Source: Behavioral Risk Factor Surveillance System, CDC.

Prevalence* of Self-Reported Obesity Among U.S. Adults by State and Territory, BRFSS, 2013

*Prevalence estimates reflect BRFSS methodological changes started in 2011. These estimates should not be compared to prevalence estimates before 2011.

Source: Behavioral Risk Factor Surveillance System, CDC.

Obesity & Pharmacokinetics

Drug Distribution (V_d)
- Body composition
- Blood flow
- Drug lipophilicity
- Plasma protein binding

Drug Clearance (CL)
- Hepatic metabolism
 - Effects of obesity poorly characterized
- Renal clearance
 - GFR with obesity

Obesity & Drug Distribution

Hydrophilic Drug
$\leftrightarrow V_d$

Lipophilic Drug
$\uparrow V_d$

Hydrophilicity/Lipophilicity of Antibiotics

<table>
<thead>
<tr>
<th>Hydrophilic Antibiotics</th>
<th>Lipophilic Antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides</td>
<td>Chloramphenicol</td>
</tr>
<tr>
<td>Beta-lactams</td>
<td>Fluoroquinolones</td>
</tr>
<tr>
<td>Penicillins</td>
<td>Lincosamides (clindamycin)</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td>Macrolides</td>
</tr>
<tr>
<td>Carbapenems</td>
<td>Rifampin</td>
</tr>
<tr>
<td>Glycopeptides (vancomycin)</td>
<td>Sulfamethoxazole-Trimethoprim</td>
</tr>
<tr>
<td>Polymyxins</td>
<td>Tetracyclines</td>
</tr>
</tbody>
</table>

- Note: Water content in adipose tissue ~30% of other tissues

PK Alterations Across Body Size Spectrum

- Relationship between body size and physiology → Power Law
 \[P = a \cdot W^b \]
- Change in PK parameter with every additional kg of TBW

Pharmacokinetic Alterations in Special Populations

Critical Illness

- High antimicrobial utilization rates in this population
- Severe Sepsis
 - Incidence: 300 cases per 100,000 population
 - Intensive care unit (ICU) admission ~50%
 - Mortality: 25% (approaching 50% in septic shock)
 - Most common cause of death in non-coronary ICUs
- Dosing particularly challenging in these dynamic hosts
 - Rapid decline in organ function
 - Massive fluid shifts

Obesity & Drug Clearance

- Glomerular hyperdynamics (aka augmented renal clearance)
 - \(GFR \uparrow 51\% \) and renal plasma flow \(\uparrow 31\% \)
- Suggests renal vasodilatation of the afferent arteriole
 - \(\uparrow \) transcapillary hydraulic pressure difference
- Significantly affects clearance of multiple compounds
 - Albumin (fractional clearance \(\uparrow 70\% \))
 - Renally-cleared antibiotics

Critical Illness & Pharmacokinetics

Drug Distribution \(\uparrow V_s \)

- Capillary leak syndrome
- Hypocalbuminemia
- Therapeutic Interventions
- Fluid replacement
- Mechanical ventilation
- Extracorporeal circuits
- Surgical drains
- Plasma protein binding

Drug Clearance \(\uparrow \) or \(\downarrow CL \)

- \(\downarrow \) CL
 - Acute Kidney Injury
 - Hypoperfusion, vasopressors
 - Chronic Kidney Disease
 - Chronic Hepatic Disease
 - \(\downarrow \) CL
 - Augmented renal clearance
 - Hypocalbuminemia
Critical Illness & Drug Distribution

- Hydrophilic Drug
 - \(V_d \) increases
- Lipophilic Drug
 - \(V_d \) decreases

Critical Illness & Clearance

- Diminished Clearance (renal or hepatic)
 - May result in supratherapeutic antibiotic concentrations
 - Fairly good representation in modern PK studies
 - Dosage adjustment recommendations exist (renal>hepatic)
- Augmented Clearance (especially renal)
 - May result in subtherapeutic antibiotic concentrations
 - Often under recognized/represented in PK studies
 - Negligible dosing recommendations, yet emerging area of research

Lean Critically Ill
- Diminished Clearance
 - May result in supratherapeutic antibiotic concentrations
 - Fairly good representation in modern PK studies
 - Dosage adjustment recommendations exist (renal>hepatic)

Dosing Strategies

- Fixed Dosing
 - Ex: Ceftaroline 600mg IV Q12h

- Weight-Based Dosing
 - Ex: Daptomycin 6 mg/kg IV Q24h

Predicting Antibiotic Exposure Based on PK Alterations

- Case Study: Aminoglycosides (Weight-based Dosing)
 - \(V_d \) has to increase in proportion to body weight to ensure equivalent \(C_{max} \)

\[C_{max} = \frac{Dose}{V_d} \]

- Scenario #1: Septic shock patient receiving massive fluid resuscitation

Scenario #2: Morbidly obese male with a complicated UTI

Which scenario affects \(V_d \) (and in turn \(C_{max} \))?
C\text{max}\cdot\text{MIC}

\[C_{\text{max}} = \frac{\text{Dose}}{V_d}\]

- Scenario #2: Morbidly obese male with a complicated UTI
 - Key Concept:
 - Aminoglycosides are hydrophilic so minimal anticipated effect of excess body weight on \(V_d\) (water content of adipose tissue ~30%)
 - Solution:
 - Utilize adjusted body weight (ABW) to calculate initial dose
 \[\text{ABW} = \text{IBW} + 0.4 (\text{TBW} - \text{IBW})\]
 \[\text{IBW} = \text{Ideal Body Weight}, \text{TBW} = \text{Total Body Weight}\]

AUC:MIC

\[\text{AUC} = \frac{\text{Dose}}{\text{CL}}\]

- Case Study: Vancomycin (Weight-based Dosing)
 - CL has to increase in proportion to body weight to ensure equivalent AUC across weight spectrum

- Scenario #1: Septic shock patient receiving massive fluid resuscitation
- Scenario #2: Morbidly obese male with a complicated cellulitis
 Which scenario affects CL (and in turn AUC)?

%T>\text{MIC}

\[t_{\frac{1}{2}} = \frac{V_d}{0.693/\text{CL}}\]

- Case Study: Beta-lactams
 - \(V_d\) and CL have to increase in proportion to body weight to ensure equivalent \(t_{\frac{1}{2}}\) across weight spectrum

- Scenario #1: Septic shock patient receiving massive fluid resuscitation
- Scenario #2: Morbidly obese male with a complicated UTI
 Which scenario affects \(V_d\) and CL (and in turn \(t_{\frac{1}{2}}\))?
Importance of Renal Function

- Main component of antibiotic clearance (CL)
- Changes in CL particularly drive AUC-MIC and %T>MIC (and Cmin)

Augmented Renal Clearance (ARC)

- Defined as creatinine clearance (CrCl) ≥ 130 mL/min
- Obese patients with minimal comorbid conditions
- Trauma patients, burn patients, other hyperdynamic kidney states
- ↓ Probability of achieving target AUC-MIC and %T>MIC
- Antibiotics affected: Vancomycin, Beta-lactams, etc.
- Difficult to detect at the bedside without measuring CrCl via timed urine collection
- Estimated CrCl equations often poorly correlate with ARC
 - Cockcroft-Gault
 - Modification of Diet in Renal Disease (MDRD)

Augmented Renal Clearance (ARC)

- N = 49 ICU patients in Malaysia
- Median age 34 years, 57% trauma admissions
- 39% with ARC (CrCl > 130 mL/min) based on measured CrCl
- In ARC group:
 - Emergent admissions significantly more common than elective ones
 - Measured CrCl not correlated to Cockcroft-Gault (G-G) CrCl

Current Dosing Strategies in Special Populations

Fixed-Dosed Antibiotics in Obesity

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Standard Dosing</th>
<th>Modification in Obesity</th>
<th>Effect of Obesity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbapenems</td>
<td>Varies: Management 5-6 g Q8h, 2-3 g Q6h for meningitis</td>
<td>Consider meningal dosing in other invasive diseases</td>
<td>Increased Vd and CL</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>2g IV Q8h</td>
<td>3g IV Q8h if ≥ 100 kg</td>
<td>Increased Vd and CL</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>2g IV Q6h</td>
<td>3g IV Q6h if ≥ 100 kg</td>
<td>Increased Vd and CL</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>1800mg IV Q12h</td>
<td>1800-2000mg IV Q12h or 300mg PO Q12h</td>
<td>Increased CL, Decreased tissue penetration</td>
</tr>
<tr>
<td>Linezolid</td>
<td>600mg IV/PO Q12h</td>
<td>600mg IV/PO Q12h or 900mg PO Q12h</td>
<td>Increased Vd and CL</td>
</tr>
</tbody>
</table>

Weight-Based Antibiotics in Obesity

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Recommended Dosing Weight in Obesity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides</td>
<td>Adjusted Body Weight (add 40% of TBW/IBW)</td>
</tr>
<tr>
<td>Daptomycin</td>
<td>TBW (even in high-dose)</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>TBW (consider max of 2500mg per infusion)</td>
</tr>
<tr>
<td>Sulfamethoxazole- trimethoprim</td>
<td>TBW</td>
</tr>
<tr>
<td>Isoniazid, Pyrazinamide, Ethambutol</td>
<td>IBW</td>
</tr>
</tbody>
</table>
Beta-lactams

- Extended/continuous infusions may improve clinical outcomes.
- Systematic review and meta-analysis: 13 RCTs and 13 cohort studies evaluated clinical outcomes with extended/continuous (E/C) vs. intermittent infusion (I)
 - Mainly beta-lactams (2 vancomycin)
 - RR 0.83 (95% CI 0.66, 1.00)

Risk of Target Non-Attainment in Critical Illness

- Subject PK data from DALI study: N=343 critically ill patients, 8 different beta-lactams
- Target non-attainment for beta-lactams:
 - Failed to achieve 50% ft>MIC: 12.8% (66/343) patients
 - Failed to achieve 100% ft>MIC: 31.4% (142/343) patients
- Risk factors for target non-attainment per multivariable logistic regression model:
 - Intermittent infusion (both targets)
 - Adjusted odds of non-attainment 41.4% lower with extended or continuous infusion (P=0.001 and P=0.027)
 - ^CICl (100% ft>MIC only)
 - aOR 1.012 per ml/min, P=0.001

Therapeutic Drug Monitoring

- Remains an important tool to tailor antibiotic regimens to these patients who do not match population PK
- When possible, recommend getting at least 2 concentrations (steady state preferred):
 1. Post-distributional peak or mid-dose concentration
 2. Trough concentration
- Ongoing research to implement TDM of additional antibiotics: Beta-lactams (penicillins, cephalosporins, and carbapenems)
- Polymyxins (colistin, polymyxin B)
- Clinical data associating PK-PD target attainment with clinical outcomes still lacking - requires TDM in real patients

Key Points

- Few generalizations exist to guide antibiotic dosing in obesity or critical illness
 - Case-by-case basis
 - Knowledge of underlying PK helpful in predicting altered exposure
- Weight-based dosing based on concept of CL and Vd increasing proportionally with body size
 - May not always be true at extremes of weight or in certain clinical scenarios
 - Alternative body size descriptors or dosing strategies may be needed
- Augmented renal clearance is under-recognized
 - May result in subtherapeutic antibiotic exposures in both obese and critically ill patients

Bottom Line

One dose does NOT fit all

Consider special populations in antibiotic dosing much like renal function and other comorbidities

SCSHP 2015 Annual Meeting

Does One Dose Fit All? Antibiotic Dosing in Special Populations

Julie Ann Justo, PharmD, MS, BCPS, AAHIVP
Assistant Professor
South Carolina College of Pharmacy, USC Campus
Infectious Diseases Clinical Specialist
Palmetto Health Richland