Sustaining an Antimicrobial Stewardship

"Much needless expense, untoward effect, harm and disappointment can be prevented by better judgment in the use of antimicrobials."

Whitney A. Jones, PharmD
Antimicrobial Stewardship Coordinator
Infectious Diseases Specialist
MCG Health, Inc.

Objectives

- Describe ways in which to employ local microbiologic data
- Discuss the use of pharmacodynamic principles to optimize clinical outcomes
- Identify supplemental improvement strategies for antimicrobial stewardship
- Discuss modes of communication of stewardship processes and outcomes

Bad Bugs, No Drugs, No ESKAPE!

- Imparts utmost importance on antimicrobial stewardship programs
- It’s not just about streamlining anymore
- Multifaceted approach
 - Selection of appropriate antimicrobial
 - Dose optimization
 - Curative duration of administration
 - Minimization of toxicity
 - Minimization of conditions for selection of resistant strains

Antimicrobial Selection

- Hospital Mortality, %
 - Adequate
 - Inadequate

Initial Antimicrobial Treatment

Clinical Microbiology

- Critical role
 - Timely identification and susceptibility testing
 - Resistance surveillance
- Local antibiograms
 - Pathogen-specific susceptibility data
 - Location-specific susceptibility data
 - Inpatient vs. outpatient
 - ICU vs. ward
 - Adaptation of national guidelines

Local Trends in Antimicrobial Susceptibility

- S. aureus
 - Hospital-wide
 - ICU

- Gentamicin
- Piperacillin-tazobactam
- Tobramycin

Pip-taz = Piperacillin-tazobactam

Clinical Microbiology

- Critical role
 - Timely identification and susceptibility testing
 - Resistance surveillance

- Local antibiograms
 - Pathogen-specific susceptibility data
 - Location-specific susceptibility data
 - Inpatient vs. outpatient
 - ICU vs. ward
 - Adaptation of national guidelines

Use of Local Microbiologic Data for Treatment of HAP

<table>
<thead>
<tr>
<th>Additional Antibiotic</th>
<th>Drugs</th>
<th>None</th>
<th>Ciprofloxacin</th>
<th>Gentamicin</th>
<th>Amikacin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piperacillin-tazobactam</td>
<td>80%</td>
<td>82%</td>
<td>81%</td>
<td>96%</td>
<td></td>
</tr>
<tr>
<td>Cefepime</td>
<td>81%</td>
<td>83%</td>
<td>82%</td>
<td>96%</td>
<td></td>
</tr>
<tr>
<td>Meropenem</td>
<td>82%</td>
<td>83%</td>
<td>83%</td>
<td>96%</td>
<td></td>
</tr>
</tbody>
</table>

*Data are presented as percentage susceptible to at least one antibiotic.

HAP = Hospital-acquired pneumonia

Don’t Miss a Strep....

- Choosing susceptibility panels for your automated system

- Considerations
 - Formulary
 - Breakpoint, MIC or MIC/Combo
 - Antibiogram
 - ESBL confirmation test
 - Inducible clindamycin screen

Pharmacokinetic/Pharmacodynamic Indices

- AUC: Area under the concentration-time curve
- Cmax: Maximum plasma concentration
- T>MIC: Time above MIC
- MIC: Minimum Inhibitory Concentration

β-lactam Optimization Strategies

1. Use of antibiotics with long half-life
2. Increasing the dose
3. Increasing the dosing frequency
4. Increasing the infusion duration

Extended-Infusion of Meropenem

![Graph showing concentration over time for Meropenem 500 mg infusion](image)

Extended Infusions of Doripenem

![Graph comparing 1 hour and 4 hour infusions](image)

Review of Clinical Benefits

- Meta-analysis
 - Continuous or extended infusions of β-lactams

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Odds Ratio (95% confidence interval)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical cure</td>
<td>1.04 (0.74–1.46)</td>
<td>0.83</td>
</tr>
<tr>
<td>Mortality</td>
<td>1.00 (0.48–2.06)</td>
<td>1.00</td>
</tr>
</tbody>
</table>

- Conclusions
 - Use of continuous infusions leads to same results as higher dose antibiotic boluses

Piperacillin-Tazobactam for Pseudomonas aeruginosa Infection: Clinical Implications of an Extended-Infusion Dosing Strategy

- 194 patients
 - Extended infusions – 102 patients
 - Intermittent infusions – 92 patients
- APACHE score ≥ 17
- 14-day mortality
 - 12.2% extended infusions vs. 31.6% intermittent infusions
 - \(P = 0.04 \)

Efficacy and safety of intravenous infusion of doripenem versus imipenem in ventilator-associated pneumonia: A multicenter, randomized study

![Graph showing efficacy and safety comparison](image)
Pitfalls of Extended-Infusions

- Drug compatibility
- Infusion pump characteristics
 - Drug libraries
 - Programmable vs. non-programmable
 - Lock-outs
- Infusion volume
 - Infusion line dead space
 - Interruptions

Implementation of Extended Infusions

- Identify barriers
 - Systematic
 - Logistics
 - Infusion pump software
 - Personnel
- Extensive education
- CPOE utilization

Supplemental Strategies

- Information technologies
- CPOE
- Computer-assisted decision support
- Rapid molecular diagnostic testing
- Antimicrobial stewardship care bundles

“To Err is Human”

Computer-Assisted Support

- Reduction of:
 - Bug-drug mismatches
 - Overall antibiotic use
 - Excess antimicrobial dosages
 - Excessive-dose days
 - Allergy-drug mismatches
 - Drug-related side effects
 - Antimicrobial costs
 - Total hospital costs
 - Length of hospital stay

CPOE

- Improved compliance with treatment guidelines
- Reduction of:
 - Antimicrobial prescribing errors
 - Antimicrobial costs
 - Length of hospital stay
 - Improved antimicrobial use

Computer-assisted Management Program for Antifungicides at LDS

<table>
<thead>
<tr>
<th>Variable</th>
<th>Penicillin Fos (N=50)</th>
<th>Amphotericin B (N=50)</th>
<th>Difference</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of different antibiotic agents treated</td>
<td>23.9 ± 7.2</td>
<td>19.3 ± 7.2</td>
<td>4.6</td>
<td><0.01</td>
</tr>
<tr>
<td>Duration of antibiotic therapy (days)</td>
<td>14 ± 5.2</td>
<td>14 ± 5.2</td>
<td>0.0</td>
<td>>0.05</td>
</tr>
<tr>
<td>No. of antibiotic agents</td>
<td>1.0 ± 0.5</td>
<td>1.0 ± 0.5</td>
<td>0.0</td>
<td>>0.05</td>
</tr>
<tr>
<td>No. of patients receiving antibiotics</td>
<td>40 (80.0%)</td>
<td>40 (80.0%)</td>
<td>0.0</td>
<td>>0.05</td>
</tr>
<tr>
<td>Length of stay in ICU (days)</td>
<td>4 ± 2.2</td>
<td>4 ± 2.2</td>
<td>0.0</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

ADVISE Program

![Graph showing statistical significance](image)

Proprietary Informatics

- Diverse functions
 - Hospital epidemiology
 - Antimicrobial stewardship

- Programs available
 - TheraDoc
 - SafetySurveillor
 - BD Protect
 - Quality Compass
 - Health Evaluation through Logical Processing (HELP)

Computer-Assisted Stewardship

- Institution specific
- Implementation is challenging
 - Technology
 - Identification and participation of users
 - Functionality
 - Time
 - Installation
 - Validation
- Cost

Rapid Molecular Testing

- Multiplex detection recently made available
 - Clinical outcome improvement
 - Decreasing time to identification
 - Provision of therapy
 - Earlier
 - More effective
 - Evaluation of clinical outcomes and economic impact

Rapid PCR S. aureus Blood Culture Test

![Graph showing comparison](image)
Economic Impact of MRSA PCR

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Pre-PCR period</th>
<th>Post-PCR period</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital costs by department</td>
<td>(n = 74)</td>
<td>(n = 62)</td>
<td></td>
</tr>
<tr>
<td>Pharmacy, mean (SD)</td>
<td>$15,716 ± 21,271</td>
<td>$262 ± 1,194</td>
<td>.81</td>
</tr>
<tr>
<td>Microbiology laboratory, mean USD ± SD</td>
<td>$686 ± 10,230</td>
<td>561 ± 687</td>
<td>.13</td>
</tr>
<tr>
<td>Room and board</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICU, mean USD ± SD</td>
<td>$27,207 ± 25,777</td>
<td>17,737 ± 21,404</td>
<td>.03</td>
</tr>
<tr>
<td>Non-ICU, mean USD ± SD</td>
<td>$12,620 ± 13,491</td>
<td>10,117 ± 10,932</td>
<td>.24</td>
</tr>
<tr>
<td>Other*, mean USD ± SD</td>
<td>$14,842 ± 10,012</td>
<td>16,430 ± 20,077</td>
<td>.02</td>
</tr>
<tr>
<td>Total hospital costs, mean USD ± SD (n = 144)</td>
<td>$90,051 ± 50,076</td>
<td>48,350 ± 50,076</td>
<td>.00</td>
</tr>
</tbody>
</table>

Rapid Viral Testing

- Wake Forest University Baptist Medical Center
- Implementation of viral multiplex PCR
- 2009/2010 influenza season with H1N1
- Immunocompromised patients with pneumonia
 - 10-15% viral
 - Respiratory syncytial virus (RSV)
 - Human metapneumovirus
- Rapid de-escalation of antibiotic therapy if possible

Antimicrobial Stewardship Care Bundles

- Current care bundles include antibiotics
 - “100K lives campaign”
- The missing care bundles
 - Antibiotics for treatment in acute settings
 - Antibiotics as surgical prophylaxis
 - Incorporation into antimicrobial stewardship programs

Implementation of Stewardship Care Bundles

- Quality indicators
 - Documentation of treatment rationale
 - Collection of appropriate cultures
 - Appropriate empiric antimicrobial selection
 - Appropriate deescalation

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Control Phase</th>
<th>Intervention Phase</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documented indication for antibiotic therapy</td>
<td>75 (90) (97)</td>
<td>90 (94) (90)</td>
<td>.12</td>
</tr>
<tr>
<td>Appropriate culture</td>
<td>75 (90) (97)</td>
<td>90 (94) (90)</td>
<td>.06</td>
</tr>
<tr>
<td>Appropriate empirical therapy</td>
<td>67 (84) (89)</td>
<td>90 (94) (90)</td>
<td>.01</td>
</tr>
<tr>
<td>Appropriate deescalation</td>
<td>42 (57) (61)</td>
<td>90 (94) (90)</td>
<td>.01</td>
</tr>
<tr>
<td>All indications combined</td>
<td>133 (89) (92)</td>
<td>90 (94) (90)</td>
<td>.00</td>
</tr>
</tbody>
</table>

Communication

- Education, education, education
- Reports
- Community stewardship
Sustaining an Antimicrobial Stewardship

"Much needless expense, untoward effect, harm and disappointment can be prevented by better judgment in the use of antimicrobials."

Whitney A. Jones, PharmD
Antimicrobial Stewardship Coordinator
Infectious Diseases Specialist
MCG Health, Inc.