Regulatory Considerations for Biologic/Device Products

Biointerface 2006
December 4, 2006
Joyce L. Frey-Vasconcells

Biological – Medical Device Combination Products

Examples of Regulated Biologic-Device Combination Products

- Metabolic support systems
 - Hepatic
 - Renal
 - Pancreatic
- Tissue repair/replacement
 - Cardiovascular
 - Cartilage and bone
 - Cornea
 - Muscle
 - Neurological
Combination Products

- Tissues
- Traditional Pharmaceuticals
- Traditional Devices

Developmental Challenges

- Complexity of products
 - Interactions between components
 - Involves different scientific discipline
 - Different regulatory requirements for each component

- Review process – regulations don’t always fit

- Communication –
 - Working with two different centers
 - Understanding the language

- Different reporting requirements
- Number of applications
- Development within company vs. working with another company
- Regulated differently in different countries
 - Introduce new terminology – tissue engineering

PROCESS CONTROLS

SOURCE CONTROLS

Assuring Safety/Efficacy

PRECLINICAL EVALUATION

CLINICAL STUDY - SAFETY and Efficacy
Product Characterization

Step-wise Approach to Application of Regulatory Requirements

Full characterization
21 CFR 610

Product Characterization

Pre-clinical

QA & QC, Clinical Monitoring Program

Prior to Phase I: need product safety testing and basic characterization info

Product Development Considerations

Product Characterization

Identity, purity, potency, viability, stability

Regulatory Concerns Common to All Cellular/Tissue Components

- Product Safety
 - Donor screening and testing
 - Adventitious agents, tumorigenicity, pyrogenicity
 - Biocompatibility testing with device

- Product Characterization
 - Identity, purity, potency, viability, stability
Regulatory Concerns Common to All Cellular Components

- Manufacturing Process – cGMPs
 - Control of product and process
 - Qualification of reagents
 - Segregation and tracking
 - different donors/different lots

- Reproducibility/Consistency of Product Lots
 - Development of in-process and lot release specifications
 - Ensure efficacy
 - Not dependent on autologous, allogeneic, or cell lines

Concerns Unique to Cellular Products

- Size of lot
 - one dose
 - one patient
- Timing of manufacture, testing, and administration
- Storage/holding/shipping

Questions: Ensuring a Safe, Pure, and Potent Product

- What should I test?
- When should I test?
- How should I test?
- All dependent on product and manufacture process
Device Considerations for Product Development

- Start with components already cleared/approved by FDA, if possible
- Pre-clinical testing should focus on modifications to already approved products
- Use well-established, “medical grade” materials (e.g., USP Class VI tested), if possible
- Consider the use of materials and components that adhere to recognized consensus standards
- Follow FDA guidance documents when possible
- Consult with FDA review staff early in the development process

REMINDER: Interdependence of Product Development Regulatory Concerns

Product Safety
- Donor Screening
- Product Testing
 - Microbial agents
 - Tumorgenicity
 - Pyrogenicity
- Biocompatibility

Characterization
- Identity
- Purity
- Potency
- Biocompatibility

Consistency
- Specifications
- Stability
- Comparability

Manufacturing
- Process control
- Qualification program
- QA/QC
- Tracking

Challenge for Combination Products

- Product transplanted may go thru additional remodeling
 - How control for environment of transplant site?
- May not be able to do complete release testing on final product
 - More emphasis on testing components up front
 - Combine with release testing = product consistency, safety, and characterization
- May need to make a surrogate along side of final product
 - Increase cost per unit
Preclinical Design Considerations

Goal of Preclinical Safety Evaluation
- Preclinical considerations for Phase I/II trials
 - Recommendation of initial safe dose & dose escalation scheme in humans
 - To determine an acceptable risk/benefit ratio in humans
 - Identification of potential target organ(s) of toxicity/activity
 - Identification of parameters to monitor clinically
 - Identification of inclusion/exclusion criteria
 - To discern the mechanism of action
 - Provide sufficient data to support labeling
 - Terminate potentially unsuccessful development programs

Selection of the Endpoint - Safety
- Attempt to incorporate the clinical application in the preclinical study design
 - Potential predictors of adverse effects in humans
 - Potential target organs
 - Clinical monitoring
 - Inclusion/exclusion criteria
- Correlation of PD profile w/ toxicity
Device Pre-clinical Testing

- Mechanical strength/integrity
- Biocompatibility
- Electrical safety
- Software validation/verification
- Shelf life
- Performance: in vitro (bench) and in vivo (animal models)
- Purity, potency and identity of cellular components

Take Home Messages - Preclinical

- The same amount of careful consideration in designing the clinical program should apply to the preclinical program
 - Talk with FDA early - prior to initiation of preclinical studies
- Utilize relevant animal species & animal models of disease in preclinical studies
 - No one species will be representative or predictive for all humans (including humans)
- A better understanding of fundamental & physiological mechanisms will help to provide a scientific basis for safer & faster clinical development

Clinical Trial Design Considerations
Clinical Efficacy Trial Design

- Size of Trial
 - Expected frequency and size of effect/benefit
 - Disease indication and stage of disease
 - Chronic disease vs. life-threatening
 - Patient Selection
 - Meaningful Endpoints
 - Potential Toxicity
 - Need to balance potential risk vs. potential benefits
 - Existing therapies
 - Safety database
 - Like products vs. novel

Summary - Clinical

- Ensuring safety is always FDA’s primary goal
- Good product development includes well-designed, well-executed, scientifically valid, interpretable clinical studies

Product and Clinical Development

- Preclinical
 - The first step in developing products for clinical use is to establish that they are reasonably safe to test in humans
- CMC
 - Establishing the safety, purity, potency, and consistency of a product
- Clinical
 - Data must be sufficient to assess risk-benefit and describe use in a label
- All must develop together and not independent!
Phases of Development

Phase 1
- First studies in humans – estimate maximum tolerated dose
- Initial determination of safety
- Spirit of GMP
- Product characteristics, assays, and process being defined

Phase 2
- Expanded safety studies
- Therapeutic exploratory – first look at efficacy
- Define – dose, schedule, route of administration
- Product assays being finalized

Phase 3
- Look at further safety issues
- Confirmatory trials for efficacy
- Evaluate risk-benefit relationship
- Provide adequate basis for labeling
- Product and process well defined
- Full GMP

Must I do all 3 phases

- No, sometimes one can combine phases
 - Needs to be very carefully analyzed
 - Remember product must be ready also

- What you prove is what the label will say!!

General Principles

- Novelty of the product
 - Components vs. product as a whole
- Extent previously studied
- Known or suspected risks
- Developmental phase
- Building process – never too early to start
One Size does NOT! Fit ALL
Flexibility Required

What is a Combination Product?
* Combinations of different types of products:
 * Drug-device
 * Device-biologic
 * Drug-biologic
 * Drug-device-biologic
 * NOT drug-drug, device-device or biologic-biologic
* They can be:
 * Physically or chemically combined
 * Co-packaged in a kit
 * Separate, cross-labeled products

Challenge

Primary Mode of Action
Consultation Regulations

Drugs
NDA/IND
COMP
AERS

Biologics
BLA/IND
AERS

Devices
PMA/510(k)/IDE
QSR
MCR
Office of Combination Products

- Mandated by the Medical Device User Fee and Modernization Act of 2002 (MDUFMA)
- Established December 24, 2002
- Organizationally within the Office of the Commissioner
- Work with industry and the three medical product Centers: CBER, CDER and CDRH
- Centers responsible for review and regulation
 - http://www.fda.gov/oc/combination

OCP Roles

- Make jurisdictional determinations
- Oversee/help coordinate premarket review
- Ensure consistent/appropriate postmarket regulation
- Develop policy, guidance and regulations
- Serve as resource for industry and review staff
- Resolve timeliness disputes

OCP Objectives

- Ensure combination product regulation is:
 - Clear
 - Consistent
 - Appropriate
 - Predictable
 - Transparent
Request for Designation

Request for Designation (RFD) – General Information

- Voluntary
- 21 CFR 3.7 has requirements – ≤ 15 pages
- For both combination and non-combination products
 - Classification and Assignment
 - Primary Mode of Action (for combination products)
 - Clarification of Regulatory Pathway
- 60 day clock
- Email: combination@fda.gov

When Should an RFD be Submitted?

- For any product where jurisdiction is unclear or in dispute.
- Before filing any application for premarket review (investigational or marketing application)
- Sufficient information to make a determination
Assignment for Combination Products -
Section 503(g) of the Act

* Lead Center based on its “primary mode of action”
* PMOA was not defined in the statute or regulations
* For some products, PMOA is difficult to identify
 * Early in development (just don’t know)
 * Products that have two (or more) completely different modes of action, neither of which is subordinate to other

Final Rule: August 25, 2005 Federal Register

* Definitions:
 * “Mode of action”
 * “Primary mode of action”
* Assignment algorithm:
 * Used when PMOA cannot be determined with reasonable certainty
 * Basis for sponsor’s assignment recommendation

Final PMOA Rule: Definitions

* MOA = means by which a product achieves its intended therapeutic effect or action.
 * Drug
 * Device
 * Biologic
* PMOA = single MOA of a combination product that provides the most important therapeutic action of the combination product.
 * Make the greatest contribution to the overall intended therapeutic effect
Algorithm for Combination Products

1. MOA
 - Drug
 - Device
 - Biologic
 - Device and Biologic

2. PMOA
 - Biologic
 - Device

3. Safety and Efficacy of similar product

4. Most expertise for significant safety and efficacy

Premarket Review

"timely and effective"

- Consultation
 - One center – regulatory responsibility and sign-off
 - One center – serves as consult to lead center

- Collaboration
 - Both centers have regulatory responsibility and sign-off

Additional Information

- Draft Good Manufacturing Practice Guidance
 - Published September 29, 2004

- Concept papers for comment
 - Adverse Event Reporting
 - Number of Marketing Applications

- Workshop - Cross Labeling
What must we do?

- Careful balance of potentially great but unproven benefits against uncertain risks
- Sensitivity to public concerns including safety and ethics
- Clear regulatory pathway
- Have the same path for like products
- Team approach for regulatory oversight and science
- Communications critical to success

Approach to Evaluating New Human Therapies

- Understand unique issues related to preclinical, clinical, manufacturing and characterization
- Encourage early interactions in order to facilitate an efficient review process.
- Regulation of biologic-device combination product will involve reviewers from both CBER and CDRH, regardless of which Center has jurisdiction.
- Flexible Regulatory Approach: Product Development is a Continuous Process from Pre-IND to Post-marketing. Elements of GLP, GMP, GCP need to be in place before Phase 1.

Recommendations

- One size doesn’t fit all combination products
- A combination product regulated as a device or biologic is not a traditional biologic or device
- Keep in mind the additive/modifying effect of the new constituent
- Understand the challenges and plan
- Consider full developmental scope (pre- and postmarket) throughout development
- Early discussions with both centers (and manufacturers, if applicable) at the table
- Contact OCP
Contact Information
Joyce L. Frey-Vasconcells
Executive Director, PharmaNet Consulting
PharmaNet, Inc.
815 Connecticut Avenue NW
Suite 800
Washington, DC 2006
Phone: 202-835-1345
Fax: 609-520-6953
Email: jfrey@pharmanet.com