Release Kinetics for a Cilostazol Eluting Stent Using RES TECHNOLOGY™

Ted Parker¹, Thai Nguyen¹, Cheng Li¹, Jonathon Zhao², Vipul Dave², Sylvia He¹, Shrirang Ranade¹, Yan Cheng², Robert Falotico²

Cordis, a Johnson and Johnson company, and its Affiliates, ¹ Menlo Park, CA and ² Warren, NJ

BioInterface 2009 Conference (October 26-28, 2009) San Mateo, CA
Develop a Dual Drug Stent:

- Cilostazol Release in Luminal Direction
- Sirolimus Release in Abluminal Direction

Anti-platelet Action – Increase Thromboresistance
Anti-proliferative – Synergize with Sirolimus
Filled Dual Drug Stent

Different Drugs Can Be Deposited in a Specified Pattern

Cilostazol
Sirolimus
Cilostazol: Background

• Cilostazol is a platelet inhibitor with vasodilator1,2 properties

• Animal studies have indicated that cilostazol inhibits smooth muscle cell (SMC) growth and inflammation, and accelerates endothelialization3

• Clinical studies have shown that cilostazol not only reduces stent thrombosis (ST), but also decreases restenosis and target lesion revascularization (TLR)4,5
Modulation of Cilostazol RK

• Reservoir Inlay Design
 – Single Direction Release
 – Bidirectional Release

• Drug / Polymer Weight Ratio (D/P)
 – D/P = 25/75 → 70/30

• PLGA Polymer: Lactide / Glycolide Ratio
 – PLGA 75/25: More Hydrophobic, Slower Degradation
 – PLGA 50/50: More Hydrophilic, Faster degradation
Bidirectional v. Single Direction Release

Drug Matrix D/P = 50/50 - PLGA 75/25 - *In Vitro*

Reservoir Inlay Design Can Control Release Direction
First Order Kinetic Release Plots

Bidirectional Rate ~2.5X Single Direction Rate

First Order Release Kinetics for ~50-60 Days
Higuchi Plot: Bidirectional v. Single Direction

Diffusion Controlled Release to ~80% of Dose
Effect of D/P on Single Direction Release

PLGA 75/25 - In Vitro

D/P Ratio Affects Drug Release Duration & Profile
Effect of D/P on Single Direction Release
PLGA 50/50 - *In Vitro*

Polymer Properties Can Change Profile Shape
Cilostazol *In Vitro* Release Kinetics

<table>
<thead>
<tr>
<th>Polymer</th>
<th>D/P</th>
<th>Initial First Order Rate Constant $k_1(3D)$ (d$^{-1}$)</th>
<th>Extent of Release Profile That Exhibits 1st Order Kinetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLGA 75/25</td>
<td>55/45</td>
<td>0.12</td>
<td>85%</td>
</tr>
<tr>
<td></td>
<td>70/30</td>
<td>0.39</td>
<td>90%</td>
</tr>
<tr>
<td>PLGA 50/50</td>
<td>55/45</td>
<td>0.04</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td>70/30</td>
<td>0.14</td>
<td>20%</td>
</tr>
</tbody>
</table>

1st Order Release Rate: PLGA 75/25 > PLGA 50/50
Effect of L/G Ratio on Release Profile

D/P = 55/45 - *In Vitro*

At D/P 55/45, Choice of PLGA L/G Has Marked Effect
Effect of L/G Ratio on Release Profile
D/P = 70/30 - In Vitro

At D/P 70/30, Less Effect of Polymer L/G Ratio
Porcine Safety Study

In Vivo v. In Vitro Release

Luminal Direction Release

In Vitro Release

In Vivo Release

Good In Vivo – In Vitro Correlation
Porcine Safety Study: Histology
Day 30

Cilostazol / Sirolimus

BMS
In Vitro Blood Flow Loop Model

(3 and 7-day Pre-Incubation)

Pre-Incubation for 3 days

- **Polymer Only Control**
- **Cilostazol**

Pre-Incubation for 7 days

- **Polymer Only Control**
- **Cilostazol**

3-day Incubation Thrombosis (Radiation/time normalized to Polymer only)

- Control: 100
- Cilo: 22

P < 0.001

N = 6

7-day Incubation Thrombosis (Radiation/time normalized to Polymer only)

- Control: 100
- Cilo: 42

P = 0.008

N = 6
Conclusions

• Wide range of *in vitro* cilostazol release profiles can be achieved.
 • First order
 • Biphasic
 • Linear ("Zero Order")
• Direction of cilostazol release is controllable (bidirectional v. unidirectional).
• Adjusting drug / polymer ratio allows refinement of release profile and drug dose.
• PLGA lactide / glycolide ratio has marked effect on RK profile.
• Cilostazol eluted in dual drug design was safe in porcine model.
• Eluted cilostazol improved thromboresistance in an *in vitro* model.
References