Pediatric Hypertension
Angela Gooden MSN, RN, CPNP-PC/AC
Texas Children’s Hospital, Pediatric Cardiology
Manager, Acute Care Advanced Practice Providers
Instructor, Pediatric Cardiology, Baylor College of Medicine

Disclosures

Objectives
• Define hypertension in children and review screening guidelines
• Identify long term health risks associated with hypertension
• Review causes of primary and secondary pediatric hypertension
• Review non-pharmacologic and pharmacologic management strategies to reduce blood pressure in children
• Discuss when to refer to a specialist

Abbreviations
• AH = Antihypertensive
• ARF = Acute renal failure
• CKD = Chronic kidney disease
• CVD = Cardiovascular disease
• DBP = Diastolic blood pressure
• HTN = Hypertension
• SBP = Systolic blood pressure
• cIMT = carotid intimal medial thickness
• LVM = left ventricular mass
• LVH = left ventricular hypertrophy

• Showed an upward shift of the entire distribution of childhood BP by 1.4 mm Hg for SBP and 3.3 mm Hg for DBP
• Prevalence of HTN in children also increased and is currently ~2-5%
• There were higher rates of HTN seen in non-Hispanic blacks and Mexican Americans
• Adjustment of the data for BMI suggested some of the increase was likely related to obesity
• Longitudinal evaluation has also confirmed higher BMI increased the incidence of pre HTN converting to HTN

Why do these trends matter? The Bad
• High BP is one of several risk factors of CVD identified in adults & it is has been shown to track from childhood to adulthood
• Full implementation of HTN guidelines in adults could result in ~56,000 fewer CV events and 13,000 fewer deaths annually
• Atherosclerotic changes are seen in childhood and can be accelerated by obesity, hypertension, & other risk factors
• Children with severe secondary HTN (e.g. CKD) have increased risk of stroke, hypertensive encephalopathy, congestive heart failure, and death

What is Cardiovascular disease (CVD)
• Atherosclerosis is an inflammatory process that causes plaque made of fat, cholesterol, calcium, and other substances to build up in arteries
• Progressive atherosclerosis in various arterial systems of the body can lead to obstruction and/or rupture

Cardiovascular disease
• Coronary heart disease (CHD) → myocardial infarction (MI), angina pectoris, heart failure, and coronary death
• Cerebrovascular disease → stroke and transient ischemic attack
• Peripheral artery disease → intermittent claudication
• Aortic atherosclerosis → thoracic or abdominal aortic aneurysm

Established risk factors for CVD in adults
• High blood pressure
• Family history
• Age
• Gender
• Nutrition/diet
• Physical Inactivity
• Smoking
• Blood lipid levels
• Overweight/obesity
• Diabetes
• Metabolic syndrome
• Perinatal factors
• Inflammatory markers

• Bogalusa, LA Heart Study
 CV risk factors (lipids, BP, BMI, smoking) were measured as part of a comprehensive school-based epidemiological study of a biracial community
 • Autopsy studies were done on those who died of non-CVD related causes (accidental deaths)
 • Arterial plaque and lesions were examined
 • Strong correlations were seen between the presence & intensity of risk factors & extent of severity of atherosclerosis
 • Obesity, HTN, & high cholesterol in children → tracked to adulthood
 • SBP from childhood to adulthood was a significant predictor of adult left ventricular mass (LVM)

Cardiovascular Risk in Young Finns Study
• Large prospective CV risk study in Europe with follow-up from childhood to adulthood
• Study variables: serum lipoproteins, BP, obesity indices, insulin, glucose, lifestyle, family risk, socioeconomic, and psychological variables
• Childhood HTN was related to higher adult pulse-wave velocity which indicates increased arterial stiffness

International Childhood Cardiovascular Cohort (i3C) Consortium
• Pooled data of several large long-standing cohort studies
• Most looked at similar lifestyle and biological risk factors including BP, lipids, and adiposity measures
• Over 40,000 children were examined, with ~10,000 contributing data as kids and adults
• Higher BP measurements as young as 12 years of age predicted increased adult cIMT

The Good news
• CVD events are rare in the pediatric population
• We know that treatment of HTN in adults decreases CVD risk*
• We also know that intense management of HTN in children with CKD slows progression of disease**

What is blood pressure (BP)?
• The balance between cardiac output (CO) and systemic vascular resistance (SVR); a rise in either variable without a compensatory decrease in the other will lead to increased BP
• CO regulators: baroreceptors, extracellular volume, effective circulating volume (atrial natriuretic hormones, mineralocorticoids, angiotensin), sympathetic nervous system
• SVR regulators: Pressors (angiotensin II, calcium (intracellular), catecholamines, sympathetic nervous system, vasopressin. Depressors—atrial natriuretic hormones, endothelial relaxing factors, kinins, prostaglandin E₂, prostaglandin I₂

Changes in electrolytes also affect BP:
• Sodium: Retention increases extracellular volume → changes in GFR and tubular reabsorption of Na → increased excretion
• Calcium: Increased intracellular levels → increased contractility; stimulates release of renin, synthesis of Epi, & SNS activity
• Potassium: Increased levels suppress renin release, inducing natriuresis and lowering BP

BP in children & adolescent
• Considered normal when SBP and DBP values are < the 90th percentile for age, sex, and height
• BP increases with age & height and is usually higher in males
• BP also increases with higher BMI, but this is likely pathologic and not reflected in percentiles
• Ethnic differences in BP are minimal after accounting for differences in body size*

What is hypertension (HTN)?
• Stage 1: BP is > the 95th percentile, but ≤ to the 99th percentile + 5 mm Hg
• Stage 2: BP is > the 99th percentile + 5 mm Hg

What is prehypertension (pre HTN)?
• SBP and/or DBP between the 90th to 95th percentile on 3 or more measurements or BP ≥ 120/80 mmHg in any adolescent
• Previously termed ‘high normal’
• Higher risk of progressing to sustained HTN

Screening for HTN
• Annual assessment in children 3 years and older*
• BP should be obtained via auscultation (right arm is preferred)**
• Cuff size should fit child’s upper arm with a bladder width-to-length ratio of at least 1:2
• Measure at well child and sick visits

Screening for HTN before 3 years of age
• Prematurity, VLBW, NICU stay
• Congenital heart disease (repaired or non-repaired)
• Recurrent UTI, hematuria, or proteinuria
• Known renal disease or urologic issues
• Family history of congenital renal disease
• Solid organ transplant
• Malignancy or BMT
• Use of meds that raise BP
• Systemic illnesses associated with HTN (e.g. neurofibromatosis)
• Evidence of elevated intracranial pressure

Screening for HTN
• A sphygmomanometer device is recommended (mercury or other)
• Automated oscillometric devices are not recommended for routine use, but are helpful in infants where auscultation is difficult
• High BP values via oscillometric devices must be followed-up by a sphygmomanometer device

Screening Pitfalls
• Incorrect cuff size can overestimate BP (too small) or underestimate (too large); it’s better to have a cuff that is too big, than too small
• BP in the clinic setting doesn’t account for day to night variations, white coat effect, etc. and can limit accurate assessment of HTN which is key in preventing end-organ damage, such as increased left ventricular mass
• For this reason, ambulatory blood pressure monitoring (ABPM) is increasingly used as it can more precisely detail changes in BP throughout daily activities

Usefulness of ABPMs
• Differentiate white coat HTN
• Identify masked HTN when there is clinical suspicion or persistent pre HTN
• Assess BP patterns in high-risk patients
• Assess for abnormal circadian variation in BP such as blunted dipping or isolated sleep HTN*
• Assess the severity and persistence of BP elevation in patients at high risk for hypertensive target-organ damage
• Evaluate for drug-resistance/effectiveness of AH drug therapy
• Confirm BP control in treated patients, especially those with secondary HTN
• Identify drug-related hypotension in symptomatic individuals

ABPM
• ABPM values differ substantially from normal BP measurements & expanded normative data is needed; reference values provided by the German Working Group on Pediatric HTN are currently considered the best available data for pediatric ABPM
• ABPM determinants: age, birth weight, ethnicity (may be due to differences in body size, psychosocial stress), gender (males > females), and stimulants (including ADHD meds)
• Oscillometric and auscultatory monitors are available for use in pediatric ABPM, but most centers use oscillometric devices

ABPM
• Mild sleep disturbances can occur
• Contraindications to ABPM include severe clotting disorders, rhythm disturbances, latex allergy
• ABPM should be applied to the nondominant arm to avoid interference with school work, unless there is h/o arterial surgery, such as repair of coarctation of the aorta or creation of an arteriovenous fistula
• Serious adverse events have not been reported in children, but arm vein thrombosis has been reported in adults

ABPM
• ABPM and clinic BP should be measured and compared after application; adjustments or calibration should be made if there is a > 5 mm Hg difference
• The arm should be kept still during readings and the family should maintain a diary of sleep and wake times, activities that can influence BP (e.g. stressful situations, exercise, or medication administration), and any symptoms of dizziness*
• An adequate ABPM monitoring period has at least 1 or 2 valid readings per hour over 24 hours (including during sleep); ideally readings should occur q 15-20 min (slightly decreased during sleep)

ABPM
• Mean SBP/DBP are calculated for the 24-hours and awake and sleep periods are identified
• BP load, the proportion of readings above the 95th percentile* and dipping, the drop in mean from daytime to nighttime levels, are calculated
• Values that fall outside range for SBP (60-220), DBP (35-120), HR (40-180), and pulse pressure (40-120) are discarded
• The standard parameters of mean SBP/DBP, BP load, and dipping are compared against normative values to determine normal or elevated BP

Evaluation HTN
• The goals of evaluation are to identify the etiology of HTN (primary vs. secondary), identify other CVD risk factors, and detect end-organ damage
• The basic work-up includes a detailed history and physical exam, labs, and imaging

History
• Family: Essential HTN, Atherosclerosis, Stroke, Renal disease (polycystic kidney, familial nephritis)
• Medical: NICU stay (possible UAC), BPD; Frequent UTIs, obstructive uropathies, kidney trauma, surgery, or radiation; History of coarctation repair; Weakness or muscle cramps
• Meds: corticosteroids, amphetamines, anti-asthmatics, cold meds, contraceptives, nephrotoxic abx, cyclosporine, cocaine

Physical Exam
• Delayed growth → renal disease
• Bounding peripheral pulses \rightarrow patent ductus arteriosus, aortic regurgitation
• Weak or absent femoral pulses, BP gradients (UE > LE) \rightarrow coarctation
• Abdominal bruits \rightarrow renovascular disease
• Tenderness over the kidney \rightarrow renal infection

Labs
• Electrolytes, BUN/Creatinine: renal function, abnormalities in glucose, K-homeostasis, or monogenic disorders
• Fasting glucose, lipids: DM, dyslipidemia (especially if obese, fam hx, or CKD)
• UA, urine culture: renal function & end-organ damage
• CBC: Anemia of chronic disease, e.g. vasculitis, CKD, or polycythemia

Imaging
• Echocardiogram to assess for end-organ damage \rightarrow increased left ventricular mass is an indication to initiate or intensify AH therapy
• Subclinical end-organ damage (increased LVM and cIMT) is seen in 1/3 of children with HTN; proven predictors of adult CVD risk
• A prospective study of 86 adolescents w/ primary HTN showed regression of end-organ damage after 12 months of lifestyle modifications and treatment with AH agents
• Renal ultrasound to determine presence of both kidneys, congenital anomalies, or disparate renal size

Diet and exercise recommendations

Dietary recommendations to lower BP:
• Obesity in relation to primary HTN makes weight management a large part of your treatment plan; an 8-10% reduction in BMI can reduce BP by 8-16 mm Hg
• DASH style diet of fruits, vegetables, fish, poultry, beans, whole grains, and low-fat/fat-free dairy products
• Limit salt intake through low-salt (potassium-rich) foods
• Encourage regular aerobic exercise
• Counsel avoidance of smoking, excessive alcohol consumption, and oral contraceptives*

Physical activity recommendations
• At least 60 min daily; Moderate: walking briskly, jogging; Vigorous (3x/week): running, tennis, soccer
• Limit sedentary activities to < 2 hours daily; Video games; Computer time; TV watching

Physical activity benefits
• Lower body fat and BMI
• Lower SBP/DBP
• Improved fitness measures
• Improved lipid profiles
• Increased activity can increase the amount of lipoprotein lipase activity in skeletal muscle \rightarrow fatty acids & TG are used for energy instead of fat

Competitive Sports
• Competitive sports participation is not limited in those with pre HTN or those with stage 1 HTN and no evidence of end-organ injury; BP should be checked 1-2 weeks after starting competitive sports
• Children with stage 2 HTN and no evidence of end-organ injury should be restricted from high-static sports (IIIA to IIIC)
• Children with stage 2 HTN, once treated and documented to be normotensive, can resume sports with ongoing monitoring of BP

When to treat w/ antihypertensive agents
• Symptomatic HTN
• Stage 2 HTN
• Stage 1 HTN that persists despite 4-6 months of lifestyle modifications
• Stage 1 or 2 HTN with evidence of end organ damage
• Stage 1 HTN in presence of other significant risk factors, e.g. diabetes type 1 and 2, dyslipidemia, or family hx of early CVD complications

Antihypertensive (AH) agents
• Recent era placebo-controlled trials examining the use of AH agents in children have shown good tolerance, effective reduction of BP in children, and few treatment-related adverse effects
• Most new studies have primarily focused on new AH agents including ACE inhibitors, ARBs, calcium channel blockers, and a small number of others
• Adverse effects of most AH agents are similar to those seen in adults; headache and dizziness are most common
• The risk of hypotension in those receiving standard doses is small, but still of concern

Choosing an AH agent
• There is little evidence to guide the initial AH agent for treatment of pediatric HTN; initial therapy is usually with ACE inhibitors, beta blockers, or calcium channel blockers
• Children who have not reached puberty have a higher chance of secondary HTN; calcium channel blockers are preferred rather than ACEi or ARB initially 2/2 concerns of undiagnosed renal artery stenosis
• ARBs are difficult to prescribe sometimes due to insurance limitations

AH agents
• Most agents have comparable BP lowering effects, but other factors to consider one over another include:
 o Formulation & availability
 o Associated diagnoses, especially associated kidney disease
 o Ethnicity: Black children do not respond as well to ACE inhibitors as white children*
• Upward dose titration is recommended for children who fail to achieve the target BP after a period of observation and adjustments should occur q 2 weeks
• First-line drug therapy should be chosen for max efficacy with min side effects; start at lowest known effective dose
• Choose long-acting AH agents to increase compliance (once daily dosing)

Therapeutic goals
• Reduction in BP below the 95th percentile for age and height; aim for 90th percentile in those with diabetes or CKD
• Doses should be titrated frequently for effect, about every 2-4 weeks; adding a 2nd drug to achieve desired BP may be necessary if the highest recommended level is reached or there are side effects.
• Consider discontinuing AH agents in those with well-controlled BP for about a year, successful implementation of lifestyle changes (e.g. reduction in BMI), and resolved target organ damage (e.g. no LVH).

Drugs for outpatient management of HTN
• Angiotensin-converting enzyme (ACE) inhibitors
• Angiotensin II receptor antagonists (ARBs)
• β-blockers
• Calcium channel blockers
• Central α-antagonists
• Diuretics
• Vasodilators

ACE inhibitors
• Captopril, Enalapril, Lisinopril, Benazepril, and Fosinopril
• Act by blocking the angiotensin converting enzyme \(\rightarrow \) inhibits production of angiotensin II
• Well-tolerated, but hypotension can occur, especially w/ volume depletion
• Lipid and glucose metabolism not effected like w/ high doses of diuretics, beta blockers
• Use cautiously in those reduced GFR, e.g. renal artery stenosis
• Side effects related to reduced angiotensin II formation: hypotension, ARF, hyperkalemia; related to increased kinins: cough, angioedema, and anaphylaxis
• Stop if hyperkalemia cannot be controlled or serum creatinine rises more than 30 percent above baseline
• Contraindicated in pregnancy, associated with 2nd/3rd trimester fetopathy

Angiotensin-receptor blockers
• Losartan, Irbesartan*
• Acts by displacing angiotensin II AT1 receptor \(\rightarrow \) antagonizing all effects \(\rightarrow \) leads to a decrease in peripheral resistance
• Typically well-tolerated with similar side effects to ACE inhibitors (hyperkalemia, azotemia)
• Lower rates of cough & angioedema than ACEi, but higher rates of hypotension
• Contraindicated in pregnancy & any condition that reduces renal blood flow, e.g. chronic kidney disease
• Acute volume depletion is a concern: A 2 year old receiving an ARB died due to volume depletion from acute gastroenteritis

β-blockers
• Atenolol, Bisoprolol, Metoprolol, Propranolol
• Acts by selectively inhibiting beta\textsubscript{1}-adrenergic receptors; competitively blocking beta\textsubscript{1}-receptors
• May be helpful in patients with migraines
• Available in combination with HCTZ for dual therapy
• Side effects: Bradycardia—heart rate is dose limiting; may impair athletic performance; hypoglycemia—should not be used in insulin-dependent diabetics
• Can cause increased bronchial obstruction and airway reactivity; non-cardioselective agents (propranolol) should not be used in those with asthma

Calcium channel blockers

• Amlodipine
 • Acts directly on vascular smooth muscle to produce peripheral arterial vasodilation reducing peripheral vascular resistance and BP
 • Minimum dose formulation is tricky in younger children & can lead to a larger daily dose \(\rightarrow \) increased side effects
 • Side effects: Headache, dizziness or lightheadedness, flushing, and peripheral edema
 • Monitor liver enzymes

Central \(\alpha \)-antagonists

• Clonidine
 • Acts by stimulating alpha\(_2 \)-adrenoceptors in the brain stem \(\rightarrow \) inhibitory neuron activation results in reduced sympathetic outflow from the CNS \(\rightarrow \) decreased peripheral resistance, renal vascular resistance, HR, and BP
 • Side effects: CNS depression, bradycardia, dry-mouth
 • Half-life elimination is prolonged in those with severe renal dx
 • Abrupt discontinuation causes rapid increase in BP and symptoms of sympathetic over-activity

Diuretics

• HCTZ, Furosemide, Spironolactone, Triamterene, Amiloride
 • Consider as initial therapy in post-pubertal adolescents with primary HTN because of established efficacy and low cost
 • Useful as add-on therapy in those treated with other drug classes, especially ACEi & beta-blockers
 • Side effects: K-sparing diuretics can cause severe hyperkalemia; especially with ACEi or ARB
 • Furosemide is labeled only for treatment of edema, but can be helpful in those with resistant HTN, especially w/ renal dx

Vasodilators

• Hydralazine, Minoxidil
 • Action by direct vasodilation of arterioles (with little effect on veins) \(\rightarrow \) SVR
 • Can have stimulation of hair growth 2/2 vasodilation, increased cutaneous blood flow, hair follicle stimulation
 • Max therapy with other AH agents should be used before Minoxidil
 • Side effects: Reflex tachycardia, fluid retention, lupus-like syndrome, peripheral neuritis

When to refer to a specialist

• Stage 2 or symptomatic HTN
• Multiple associated risk factors
• Unsuccessful treatment via lifestyle modifications (4-6 months)
• Evidence of end-organ damage, e.g. LVH
• Comorbid conditions:
 • Diabetes
 • Hyperlipidemia
- CKD
- Congenital heart disease
- Collagen vascular disease
- Childhood cancer survivors

Case presentations

Take home messages

- All children should be screened at least annually starting at 3 years of age (or sooner with special conditions)
- Ambulatory blood pressure monitoring can assist in the accurate diagnosis of HTN
- Secondary causes of HTN are more common in younger children
- Diet and lifestyle modifications are an important part of every treatment plan
- There are several AH agents that have been studied and proven safe and effective in children