Counseling on
Drug-Induced Nutrient Depletions

By Ross Pelton, R.Ph, Ph.D., CCN
Scientific Director: Essential Formulas
author of
a) Drug-Induced Nutrient Depletion Handbook
b) The Nutritional Cost of Drugs

This presentation has been accredited by ACPE
for pharmacists & technicians:
ACPE 0154-0000-17-018-L01-P
ACPE 0154-0000-17-018-L01-T

Ross Pelton has not disclosed any financial or
conflicts of interest in relation to this program

Goals & Objectives
• Be a better health educator and a more
effective healthcare professional
• Win/Win: Improve patient’s health outcomes
• Be more financially successful
Increased Sales (200 Rxs/day)

- Oral Contraceptives: 5 Rxs/day
- Statins: 6 Rxs/day
- Antibiotics: 15 Rxs/day
- Metformin: 5 Rxs/day
- GERD/acid suppressing drugs: 6 Rxs/day
- Acetaminophen pain meds: 15 Rxs/day
- TOTAL: 52 Rxs/day

52 Rxs/day x 24 days/month x $20/sale
$24,960 per month or $299,520/year

Drug-Induced Nutrient Depletions

- Female Hormones: FA, B6, B1, B2, B3, B12, C, E, Mg, Se, Zn, tyrosine, CoQ10, DHEA, GSH
- Anticonvulsants: D, K, FA, Ca
- Anti-diabetic Drugs: CoQ10, B12
- Anti-hypertensives: B6, CoQ10, Ca, Mg, K, Zn,
- Anti-inflammatory: Ca, K, Zn, Fe, B6, C, D, FA, K
- Cholesterol-lowering: CoQ10
- Beta-blockers: CoQ10, melatonin
- Phenothiazines/Tricyclics: B2, CoQ10
- SSRIs/SNRIs/NDRIs/TCA: Serotonin, 5-HTP, tyrosine, p-alanine
- Benzodiazepines: Melatonin
- Acid-blocking medications: B12, FA, C, D, Ca, Mg, Fe, Zn, protein
- Antibiotics: B-vitamins, vitamin K, Amino acids
- Pain meds/acetaminophen: Glutathione

Drug Side Effects

- New Rx: nausea, vomiting, rash, etc.
- Drug-induced nutrient depletions: gradual onset; often overlooked
- Oral contraceptives (B12, FA, Mg, CoQ10)
Oral Contraceptives

Oral contraceptives deplete more nutrients than any other class of commonly prescribed drugs.

Female Hormone Medications

Oral contraceptives: deplete B1, B2, B3, B6, B12, C, CoQ10, Mg, Se, Zn, tyrosine, DHEA, GSH

Estrogen replacement therapy (ERT & HRT): deplete B6, Mg, CoQ10

Nutritional Effects of Oral Contraceptive Use: A Review

- Enovid introduced in May 1960
- “After 2 decades of use, concern about the nutritional status of women consuming OC prompted this review: OC shown to depress levels of vitamins B2, B6, B12, C, folic acid, Zn.”

J. L. Webb, Nutritional Effects of Oral Contraceptive Use: A Review

Folate Depletion with Oral Contraceptive Use

Folate deficiency problems:
• Birth defects
• Cervical dysplasia
• ↑ Homocysteine = ↑ cardiovascular disease risk
• Anemia: weakness, low energy
• Depression
• ↑ breast and colorectal cancer

Drugs That Deplete Folic Acid

• Oral Contraceptives
• Anti-convulsants for epilepsy
• Antibiotics
• Metformin/Glucophage for diabetes
• Potassium-sparing diuretics: Dyazide, triamterene
• Anti-inflammatory drugs; steroids, NSAIDS (Motrin/ibuprofen, etc)
• All acid-suppressing/GERD drugs: Tagamet, Zantac, Pepcid, Prilosec, Prevacid
• Chemotherapy

Vitamin B-6 Depletion with Oral Contraceptive Use

• Reduced synthesis of serotonin and melatonin; elevated homocysteine/plaque
• Symptoms: depression, anxiety, decreased libido, impaired glucose tolerance
• Therapy: 40 mg B6/day restores biochemical values and relieves clinical symptoms

Oral Contraceptives
B6 & Depression

• 30 women using OCs for 2-5 years (none with depression)
10 of 30 (1/3) developed depression.

• In 9 of 12 clinical trials: depression occurs in 16-56% of women using oral contraceptives.

Women & Depression

Many more women are depressed than men

• A literature review spanning 33 years from 1966-1999 reported that depression occurs twice as often in women than in men

• A study sponsored by the World Health Organization (WHO) reported that depressive disorders occur from 1.5 to 3 times more frequently in women than men

Vitamin B-6 / pyridoxine

• Vitamin B-6 is required for the conversion of 5-HTP to serotonin

• Drugs that deplete B-6: birth control pills, hormone replacement therapy, loop diuretics (Lasix/furosemide), corticosteroids (prednisone)
Oral Contraceptives Deplete Tyrosine

- Precursor for synthesis of dopamine & norepinephrine
- Dopamine/norepinephrine neurotransmitter pathways are critical for overall mental & emotional health

Nutrient Precursors / Cofactors Required for Neurotransmitter Synthesis

<table>
<thead>
<tr>
<th>Serotonin Pathway</th>
<th>Dopamine Norepinephrine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>Folic Acid</td>
</tr>
<tr>
<td>Calcium</td>
<td>Iron</td>
</tr>
<tr>
<td>Folic Acid</td>
<td>Vitamin B-6</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Vitamin B-6</td>
</tr>
<tr>
<td>Vitamin B-6</td>
<td>Magnesium</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>Vitamin C</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Copper</td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
</tr>
</tbody>
</table>

Drug-Induced Nutrient Depletions & Depression

Neurotransmitter Precursors / Cofactors

- Female Hormones: FA, B6, B1, B2, B3, B12, C, E, Mg, birth control pills & HRT, Se, Zn, Co Q10, DHEA, tyrosine
- Anticonvulsants: D, K, FA, Ca
- Anti-diabetic Drugs: CoQ10, B12
- Anti-hypertensives: B6, CoQ10, Ca, Mg, K, Zn,
- Anti-inflammatory: Ca, K, Zn, Fe, B6, C, D, FA, K
- Cholesterol-lowering: CoQ10
- Beta-blockers: CoQ10, melatonin
- Phenothiazines/Tricyclics: B2, CoQ10
- Benzodiazepines: Melatonin
- Anti-acid/GERD meds: B12, FA, D, Ca, Fe, Zn, protein
- Antibiotics: B-vitamins, vitamin K
- Chemotherapy: Destroys GI/most nutrients depleted
OCs: Weakened Immune System

Key antioxidants depleted by oral contraceptives

- Vitamin C
- Vitamin E
- Selenium
- Zinc
- Coenzyme Q10
- Glutathione

Estrogen Replacement Therapy

ERT or HRT

- Vitamin B6
- Magnesium

Increased Need for Magnesium with the Use of Combined Oestrogen and Calcium for Osteoporosis Treatment

- “Prophylactic treatment of postmenopausal osteoporosis with oestrogen and calcium, often in combination, disregards the likelihood that an excess of each agent may increase magnesium requirements and decrease magnesium levels.”

- Low Mg = increase in thromboembolic cardio & cerebrovascular events.

Seelig, MS. Increased need for magnesium with the use of combined oestrogen and calcium for osteoporosis treatment. Magnesium Research 3(3) (Sept 1990) : 197-215.
Magnesium Deficiency: Pathophysiologic and Clinical Review

• If magnesium is depleted, bone stores contribute magnesium to the extra cellular fluid

• “The serum magnesium can be normal in the presence of intracellular magnesium depletion; the occurrence of a low serum level usually indicates significant magnesium deficiency.”

Blood Pressure Meds

<table>
<thead>
<tr>
<th>Hydralazine</th>
<th>B6, CoQ10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop</td>
<td>Ca, Mg, K, Zn, B1, B6, C</td>
</tr>
<tr>
<td>Thiazides</td>
<td>Mg, K, Zn, CoQ10</td>
</tr>
<tr>
<td>Potassium-sparing</td>
<td>Ca, Zn, FA</td>
</tr>
<tr>
<td>Beta-blockers</td>
<td>CoQ10, melatonin</td>
</tr>
<tr>
<td>Clonidine/Methyldopa</td>
<td>CoQ10</td>
</tr>
<tr>
<td>ACE</td>
<td>Zn</td>
</tr>
<tr>
<td>Chlorthalidone</td>
<td>Zn</td>
</tr>
</tbody>
</table>

Loop Diuretics & Thiazide Diuretics: Magnesium depletion & Heart Attacks

• Low magnesium ↑ risk of sudden cardiac death

• Only 1% of magnesium is in blood

CoQ10

- Propranolol: Decrease CoQ10-succinoxidase and CoQ10-NADH-oxidase
- Metoprolol, HCTZ, hydralazine and clonidine inhibit CoQ10-NADH-oxidase
- Methyldopa: weak succinoxidase inhibitor

Cholesterol Lowering Drugs

<table>
<thead>
<tr>
<th>HMG-CoA Reductase Inhibitors “Statins”:</th>
<th>deplete Coenzyme Q10</th>
</tr>
</thead>
<tbody>
<tr>
<td>The “fibrates”:</td>
<td>depletes B12, E, Cu, Zn</td>
</tr>
<tr>
<td>Gemfibrozil:</td>
<td>depletes CoQ10, E</td>
</tr>
<tr>
<td>Bile Acid sequest:</td>
<td>depletes A, D, E, K, B12, Ca, Mg, P, Zn, Fe, Folic Acid, beta-carotene, fat</td>
</tr>
</tbody>
</table>

Statins: How They Work

- Statins inhibit an enzyme named HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase)
- This prevents/reduces synthesis of cholesterol in the liver
- Blocking HMG-CoA reductase also blocks synthesis of CoQ10
Coenzyme Q10

Co Q10: 2 main functions
- a) lipid soluble antioxidant
- b) required for mitochondrial energy production

New Theory of Aging: Professor Anthony Linanne
Mitochondrial DNA (mDNA) damage

Mortensen: Dose-related CoQ10 Decline
- CoQ10, an essential mitochondrial redox-component; endogenous antioxidant packaged into LDL and VLDL fractions of cholesterol; and it is an important protector against atherosclerosis
- 45 hypercholesterolemic patients DB, 18 weeks; lovastatin (20-80 mg/d); pravastatin (10-40 mg/d)
- Significant dose-related decline in serum CoQ10
 - Pravastatin: 1.27 to 1.02 mmol/l = - 19.7%
 - Lovastatin: 1.18 to 0.84 mmol/l = - 28.8%
Ghirlanda: HMG-CoA RI Lower CoQ10

- DB PC trial: 2 groups of 5 healthy subjects and 30 hypercholesterolemic patients
- Pravastatin or simvastatin 20mg/day x 1 mo.
- Results: in both healthy and hypercholesterolemic patients there was a 40% reduction in total cholesterol and a corresponding 40% reduction in CoQ10

Coenzyme Q10: Clinical Benefits with Biochemical Correlates Suggesting a Scientific Breakthrough in the Management of Chronic Heart Failure

- Patients with myocardial failure have lower CoQ10 and CoQ10 deficiency increases with increasing symptoms
- CoQ10 100mg/day: 69% cardiomyopathy and 43% ischaemic heart disease good clinical response
- “Results suggest that CoQ10 is a novel and effective breakthrough in heart failure therapy & no side effects”

Statins: Cardiovascular Side Effects

Low levels of CoQ10:

- Weakens the heart muscle

- Increase in congestive heart failure

Treatment of Essential Hypertension with Co Q10

- 109 patients: 80% of patients of diagnosis over 9.2 years
- Average dose = 225 mg/day added to their existing antihypertensive medications
- 51% of patients were able to completely discontinue from 1 to 3 medications within the first 6 months (average time 4.4 months)

Cardiovascular Drugs That Deplete Coenzyme Q10

1. Statins
2. Thiazide diuretics (HCTZ)
3. Hydralazine vasodilators
4. Adrenergic agonists (clonidine, methyldopa)
5. Beta-blockers (propranolol, atenolol, etc... over 20)

Other drugs depleting CoQ10: OCs, HRT, Sulfonylureas & Biguanides, Tricyclic antidepressants (Elavil + others), Major tranquilizers (Thorazine, Haldol, + others)

Dose: 200-400 mg/day/largest meal/fat for enhanced absorption

Anticonvulsants

Barbiturates: Vitamins D, K, FA, Biotin, Ca
Dilantin: Vit.D, K, FA, B12, B1, Biotin, Ca
Tegretol: Vitamin D, FA, Biotin
Mysoline: Vitamins D, K, FA, Biotin, Ca
Depakane: FA, Carnitine, Cu, Se, Zn
Anticonvulsants
Folate & Pregnancy

- Serum & red cell folate: 50 non-pregnant and 46 pregnant epileptic women (49 pregnancies)
- All women: serum and red cell folate inversely related to plasma levels of Phenobarb and Dilantin
- 10 abnormal (20.4%): 4 spontaneous abortions (8.2%) and 6 congenital malformations (12.2%)
- Folate significantly lower in abnormal outcomes

Anti-diabetic Drugs

Sulfonylureas:
CoQ10

Biguanides:
CoQ10, B1, B12, FA

Malabsorption of Vitamin B12 and Intrinsic Factor Secretion during Biguanide Therapy

- 46 diabetic patients: 30% had malabsorption of vitamin B12
- Withdrawal normalized absorption in only half of those with malabsorption
- Biguanides can induce malabsorption by 2 different mechanisms:
 a) one is temporary and unrelated to intrinsic factor
 b) the other causes permanent ↓ in intrinsic factor secretion
- Recommend sublingual methylcobalamin or IM injections

Psychotherapeutic Drugs

<table>
<thead>
<tr>
<th>Class</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenothiazines</td>
<td>deplete B2, CoQ10, melatonin</td>
</tr>
<tr>
<td>Tricyclics</td>
<td>deplete B2 & CoQ10</td>
</tr>
<tr>
<td>Phelizine (MAOI)</td>
<td>deplete vitamin B6</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>deplete CoQ10, vit. E, melatonin</td>
</tr>
<tr>
<td>Lithium</td>
<td>deplete inositol</td>
</tr>
<tr>
<td>SSRIs</td>
<td>deplete sodium, melatonin, tryptophan</td>
</tr>
<tr>
<td>SNRIs, NDRIs, NRIs</td>
<td>Rs deplete amino acid precursors</td>
</tr>
</tbody>
</table>

Antidepressants Deplete Amino Acids

GERD & Acid-Suppressing Drugs

<table>
<thead>
<tr>
<th>Class</th>
<th>Deficiencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-2 Receptor Antagonists</td>
<td>B12, folic acid, vit. D, Ca, Fe, Zn (protein)</td>
</tr>
<tr>
<td>Proton Pump Inhibitors</td>
<td>B12, C, Ca, Mg, Fe, Zn, (protein)</td>
</tr>
</tbody>
</table>
Acid Suppressing/GERD Drug Depletions

Anti-inflammatory Drugs

Corticosteroids: Vit A, C, D, B6, B12, FA, Ca, Cr, Mg, K, Se, Zn
Sulfasalazine: Folic acid
Indomethacin: Folic acid, iron
Colchicine: Vit B12, Ca, Na, K, P, B-carotene
NSAIDS: Folic acid, melatonin, microbiome
Salicylates: Vit C, FA, B5, Ca, Fe, Na, K

The Microbiome: New Frontier In Medicine & Healthcare

- Common rice plant *Oryza sativa* has 45,000 genes
- Over 99% of your DNA is bacterial
Microbiome-Disrupting Drugs

- Antibiotics
- Proton Pump Inhibitors
- H2 Blockers
- NSAIDs
- Corticosteroids
- Chemotherapy Drugs
- Estrogen-containing meds (OCs & HRT)

Microbiome-Disrupting Drugs
Dysbiosis
Nutrient Depletions

- Probiotics produce B-vitamins, vitamin K, & aromatic amino acids (tryptophan, tyrosine, & phenylalanine)
- Beneficial bacteria produce proteases, lipases, lactase that aid in digestion of food & absorption of nutrients
- Dysbiosis causes inflammation which further disrupts digestion and absorption of nutrients

DNA Gene Sequencing Technologies
Human Microbiome Project
The New Frontier in Medicine

- 2007-2012 ($115M; 200 scientists/80 institutions)
- Our 100 trillion bacteria: not passive passengers; they are active participants directing & controlling much of our life

May 2016
Funded with $521 million
$121 million from US gov.
$400 million from private institutions

The Discordant Identical Twin Study

Can Yogurt Cure depression?
Psychology Today/April 2014

The Psychobiotic Revolution
The Gut-Brain Connection

How gut bacteria control & influence moods, emotions & state of mind

Postbiotics: Microbiome Revolution
Diversity & Balance

• Probiotics: multi-strain
• Prebiotics: Feeding your probiotics
• Postbiotic Metabolites:
 Short-chain fatty acids (SCFAs)
 B-Vits, vit. K & amino acids
 Anti-microbial peptides (AMPs)
 H2O2, antioxidants, fulvic acid, immune system, cell signaling

Chemotherapy Drugs

• Most nutrients are depleted
• Beneficial bacteria are killed
• Cytotoxic drugs can cause:
 – damage to gastric & GI mucosa/maabsorption
 – inflamed GI tract/painful, decreased appetite
 – nausea and vomiting
 – dysbiosis
Glutathione Depletion (IDEAL)
I = Immune system regulation
DE = Detoxification
A = Antioxidant
L = *Lactobacillus fermentum* ME-3

Acetaminophen & Glutathione Depletion
1) Depletes glutathione and cysteine in kidneys
 - 34%/young, - 58%/mature, - 64% old
 24-hr recovery 95%/young, 98% mature, 56% old

2) Depletes glutathione & catalase in liver; GSH 83% lower in 60 min.; increase in H₂O₂ & hydroperoxides, which causes cell/tissue injury

Acetaminophen & Liver Failure

DO YOU KNOW?
Acetaminophen overdose is the leading cause of liver failure in the U.S.

Nearly half of overdoses are unintentional.

Check the medication's label and do not exceed 4,000 mg of acetaminophen daily, or less if you drink alcohol.
Keystone Strains

Sub-dominant Strains
Of Probiotic Bacteria
With Large Biological Effects

Lactobacillus fermentum ME-3
A Glutathione-Producing Probiotic

- Isolated 1995 from GI track/healthy 1-year old child
- Boosts glutathione via 3 mechanisms
- Glutathione/Master Antioxidant & Master Detox Agent
- Produces MnSOD & increases paraoxonase activity
- Human clinical trials: 49% increase in GSH/GSSG and 26% increase in total antioxidant activity

Boosting Glutathione Levels
Glutathione: BioMarker of Aging

Glutathione is not effective orally
Glutathione nutritional precursors
NAC, lipoic acid, selenium, milk thistle
Liposomal delivery system (better)
Lactobacillus fermentum ME-3 (exceptional)
Questions & Discussion