Next-Generation Development of a Superior Grade Titanium Ti-6Al-4V Alloy via Oxygen Solid Solution Strengthening for Aerospace & Defense Applications

Katsuyoshi Kondoh, Takanori Mimoto, Nozomi Nakanishi, Junko Umeda
Joining and Welding Research Institute, Osaka University, Japan

Tyrone Jones
U.S. Army Research Laboratory, APG, MD, USA
High Performance and Cost Effective P/M Titanium Materials

All materials strongly requires:

✓ Higher Performance
✓ Stable Supply in the world
✓ Cost Reduction

Advance P/M pure Titanium in this study:

✓ Ubiquitous elements (O, N, C, H)
✓ No use of rare metals
✓ Direct-use of cheaper TiH₂ powder

Hydration

Dehydration

Katsuyoshi Kondoh and Tyrone Jones
Next-Generation Development of a Superior Grade Titanium Ti-6Al-4V Alloy via Oxygen Solid Solution Strengthening for Aerospace & Defense Applications

October 7-10, 2012 • Atlanta, Georgia, USA
Fundamentals for Cost-Performance Improvement of P/M Titanium

- Direct use of TiH$_2$ powder to fabricate P/M pure titanium materials
- Strengthening of titanium by carbon, nitrogen and oxygen
- High-strength pure titanium material using TiH$_2$+TiO$_2$ mixed powders
Direct Use of TiH$_2$ Powders by Sintering and Hot Extrusion

TiH$_2$ green compact
(Relative density; 82%)

Consolidation with $P=600$ MPa pressure at room temperature

TiH_2 powder compact

Fragmentation & Interlocking

Ti powder compact

Plastic deformation
Direct Use of TiH₂ Powders by Sintering and Hot Extrusion

Decomposition behavior of TiH₂

TiH₂ = TiHₓ + H₂ [x = 0.7~1.1] (1)

TiHₓ = α-Ti + H₂ (2)

Sintered at 800~1000 °C for 3hrs
(argon gas flow; 3 litter /min)

Katsuyoshi Kondoh and Tyrone Jones
Next-Generation Development of a Superior Grade Titanium Ti-6Al-4V Alloy via Oxygen Solid Solution Strengthening for Aerospace & Defense Applications

October 7-10, 2012 • Atlanta, Georgia, USA
Successful Fabrication of P/M Ti Material Using TiH₂ Powders

TiH₂ powder compact
Sintered at 800~1000°C
Hot extrusion at 800°C

Katsuyoshi Kondoh and Tyrone Jones
Next-Generation Development of a Superior Grade Titanium Ti-6Al-4V Alloy via Oxygen Solid Solution Strengthening for Aerospace & Defense Applications

October 7-10, 2012 • Atlanta, Georgia, USA
Fundamentals for Cost-Performance Improvement of P/M Titanium

- Direct use of TiH₂ powder to fabricate P/M pure titanium materials
- **Strengthening of titanium by carbon, nitrogen and oxygen**
- High-strength pure titanium material using TiH₂+TiO₂ mixed powders
Strengthening of Titanium by Carbon, Nitrogen and Oxygen

Carbon Nanotube (CNT) reinforcements for titanium powder materials

Fractured surface after tensile test

In-situ formed TiC

Strengthened by CNT/TiC dispersion & Carbon solid solution
Strengthening of Titanium by Carbon, **Nitrogen** and Oxygen

Pure Ti powders heated in N₂ at 600C ⇒ Compact & sintering ⇒ Extrusion

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>YS (MPa)</th>
<th>UTS (MPa)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Ti</td>
<td>484.3</td>
<td>653.9</td>
<td>29.0</td>
</tr>
<tr>
<td>Ti-N₂-600C-1h</td>
<td>903.7</td>
<td>1008.2</td>
<td>24.8</td>
</tr>
<tr>
<td>Ti-N₂-600C-2h</td>
<td>1080.1</td>
<td>1146.8</td>
<td>11.1</td>
</tr>
</tbody>
</table>

- Nitrogen solid solution into Ti
- No formation of TiN brittle phase
- Good balance between stress/elong.

Katsuyoshi Kondoh and Tyrone Jones
Next-Generation Development of a Superior Grade Titanium Ti-6Al-4V Alloy via Oxygen Solid Solution Strengthening for Aerospace & Defense Applications

October 7-10, 2012 • Atlanta, Georgia, USA
Oxygen Solid Solution Strengthening of P/M Titanium Material

Katsuyoshi Kondoh and Tyrone Jones

Next-Generation Development of a Superior Grade Titanium Ti-6Al-4V Alloy via Oxygen Solid Solution Strengthening for Aerospace & Defense Applications

October 7-10, 2012 • Atlanta, Georgia, USA
Katsuyoshi Kondoh and Tyrone Jones

Next-Generation Development of a Superior Grade Titanium Ti-6Al-4V Alloy via Oxygen Solid Solution Strengthening for Aerospace & Defense Applications

October 7-10, 2012 • Atlanta, Georgia, USA
Oxygen Solid Solution Strengthening of P/M Titanium Material

![Graph showing the relationship between additive TiO$_2$ content and mechanical properties of pure Ti matrix.](image)

<table>
<thead>
<tr>
<th>TiO$_2$ content (mass%)</th>
<th>Grain size / μm</th>
<th>Δ 0.2% YS by grain refinement / MPa *</th>
<th>0.2% YS (revised) / MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11.6</td>
<td>0</td>
<td>437.7</td>
</tr>
<tr>
<td>0.6</td>
<td>9.3</td>
<td>19.9</td>
<td>627.4</td>
</tr>
<tr>
<td>1.0</td>
<td>8.2</td>
<td>31.5</td>
<td>732.3</td>
</tr>
<tr>
<td>1.5</td>
<td>8.7</td>
<td>25.3</td>
<td>876.9</td>
</tr>
</tbody>
</table>

*Hall-Petch constant, $k=18$ MPa/mm$^{-0.5}$

Strengthening by oxygen solid solution

Katsuyoshi Kondoh and Tyrone Jones
Next-Generation Development of a Superior Grade Titanium Ti-6Al-4V Alloy via Oxygen Solid Solution Strengthening for Aerospace & Defense Applications

October 7-10, 2012 • Atlanta, Georgia, USA
Oxygen Solid Solution Strengthening of P/M Titanium Material

Theoretical analysis; Labusch model applied to Ti-O system

Critical shear stress, \(\tau_0 \) expressed as follows;

\[
\tau_0 = \left(\frac{F_m^4 c^2 W}{4 G b^9} \right)^{1/3} \quad (eq.1)
\]

\[
\Delta \sigma = \frac{\tau_0}{S_F} = \frac{1}{S_F} \left(\frac{F_m^4 c^2 W}{4 G b^9} \right)^{1/3} \quad (eq.2)
\]

- \(S_F \): Schmid factor (=0.44 ~ 0.46)*
- \(c \): Solutinized oxygen content
- \(\tau_0 \): Critical shear stress
- \(F_m \): maximum interaction force
- \(W \): \(~ 5b\)

\textbf{Katsuyoshi Kondoh and Tyrone Jones}

Next-Generation Development of a Superior Grade Titanium Ti-6Al-4V Alloy via Oxygen Solid Solution Strengthening for Aerospace & Defense Applications

October 7-10, 2012 • Atlanta, Georgia, USA
Fundamentals for Cost-Performance Improvement of P/M Titanium

- Direct use of TiH$_2$ powder to fabricate P/M pure titanium materials
- Strengthening of titanium by carbon, nitrogen and oxygen
- High-strength pure titanium material using TiH$_2$+TiO$_2$ mixed powders
High-Strength Pure Titanium Materials Using TiH$_2$+TiO$_2$ Powders

Same effect of TiO$_2$ additives on tensile properties in use of TiH$_2$ as CP-Ti powder

Further strength improvement by “Grain Refinement”?

Katsuyoshi Kondoh and Tyrone Jones
Next-Generation Development of a Superior Grade Titanium Ti-6Al-4V Alloy via Oxygen Solid Solution Strengthening for Aerospace & Defense Applications

October 7-10, 2012 • Atlanta, Georgia, USA
High-Strength Pure Titanium Materials Using TiH$_2$+TiO$_2$ Powders

TiH$_2$+1.5%TiO$_2$ mixed powders

Oxygen solid solution & grain refinement cause much superior tensile strength and ductility to Ti-64 alloy

Extruded materials

<table>
<thead>
<tr>
<th>0.2%YS</th>
<th>UTS</th>
<th>Elon.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPa</td>
<td>MPa</td>
<td>(%)</td>
</tr>
<tr>
<td>1.5wt.%TiO$_2$-900°C</td>
<td>990</td>
<td>1158</td>
</tr>
<tr>
<td>1.5wt.%TiO$_2$-1000°C</td>
<td>947</td>
<td>1093</td>
</tr>
<tr>
<td>Ti-6Al-4V (TAB6400H)</td>
<td>918</td>
<td>1047</td>
</tr>
</tbody>
</table>

Katsuyoshi Kondoh and Tyrone Jones
Next-Generation Development of a Superior Grade Titanium Ti-6Al-4V Alloy via Oxygen Solid Solution Strengthening for Aerospace & Defense Applications

October 7-10, 2012 • Atlanta, Georgia, USA
Oxygen Solid Solved P/M Ti-64 Alloy and Its Application

Matrix; Atomized *Ti-64 alloy powder*

TiO_2 content; 0, 0.5 and 0.8 wt.%

Sintering temperature; **800°C** for 90min.
Diameter; 60mm, Height; 70mm
Relative density; 92～95%

Extrusion temperature; **1000°C**
Plate width; 42mm, Thickness; 10mm
Tensile properties of extruded P/M Ti-64 with TiO₂ additives

<table>
<thead>
<tr>
<th>TiO₂ content</th>
<th>L (mm)</th>
<th>0.2%YS (MPa)</th>
<th>UTS (MPa)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 wt%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-0°</td>
<td>10</td>
<td>1133.3</td>
<td>1133.4</td>
<td>22.5</td>
</tr>
<tr>
<td>E-0° -1</td>
<td>15</td>
<td>1164.4</td>
<td>1168.1</td>
<td>12.3</td>
</tr>
<tr>
<td>E-0° -2</td>
<td>15</td>
<td>1072.7</td>
<td>1076.8</td>
<td>19.8</td>
</tr>
<tr>
<td>0.5 wt%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-0°</td>
<td>10</td>
<td>1173.7</td>
<td>1226.4</td>
<td>22.7</td>
</tr>
<tr>
<td>E-0° -1</td>
<td>15</td>
<td>1126.5</td>
<td>1199.7</td>
<td>18.6</td>
</tr>
<tr>
<td>E-0° -2</td>
<td>15</td>
<td>1099.7</td>
<td>1186.4</td>
<td>20.2</td>
</tr>
<tr>
<td>0.8 wt%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-0°</td>
<td>10</td>
<td>1280.9</td>
<td>1295.9</td>
<td>14.1</td>
</tr>
<tr>
<td>E-0° -1</td>
<td>15</td>
<td>1227.6</td>
<td>1267.9</td>
<td>10.4</td>
</tr>
<tr>
<td>E-0° -2</td>
<td>15</td>
<td>1233.2</td>
<td>1267.8</td>
<td>12.3</td>
</tr>
</tbody>
</table>

Number of test specimens, N=3

Extrusion direction
Oxygen Solid Solved P/M Ti-64 Alloy and Its Application

<table>
<thead>
<tr>
<th>θ = 0</th>
<th>0.2%YS MPa</th>
<th>UTS MPa</th>
<th>Elongation %</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂; 0%</td>
<td>1123</td>
<td>1126</td>
<td>18.2</td>
</tr>
<tr>
<td>TiO₂; 0.5%</td>
<td>1133</td>
<td>1204</td>
<td>20.5</td>
</tr>
<tr>
<td>TiO₂; 0.8%</td>
<td>1247</td>
<td>1277</td>
<td>12.3</td>
</tr>
<tr>
<td>θ = 90</td>
<td>0.2%YS MPa</td>
<td>UTS MPa</td>
<td>Elongation %</td>
</tr>
<tr>
<td>TiO₂; 0%</td>
<td>1106</td>
<td>1101</td>
<td>21.2</td>
</tr>
<tr>
<td>TiO₂; 0.5%</td>
<td>1075</td>
<td>1148</td>
<td>17.6</td>
</tr>
<tr>
<td>TiO₂; 0.8%</td>
<td>1266</td>
<td>1286</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Projectile illustration

Katsuyoshi Kondoh and Tyrone Jones
Next-Generation Development of a Superior Grade Titanium Ti-6Al-4V Alloy via Oxygen Solid Solution Strengthening for Aerospace & Defense Applications

October 7-10, 2012 • Atlanta, Georgia, USA
Summarized

Powder metallurgy process gives great opportunities to reduce materials cost and improve mechanical performance of titanium and its alloys;

- P/M pure Ti material using TiH$_2$ powders shows high strength and ductility
- Carbon, Nitrogen & Oxygen elements effective for good balance between tensile strength and elongation at ambient temperature
- Oxygen solid solution strengthening effect in P/M Ti-64 alloy is **NOT enough** for improvement of ballistic performance. Uniform dispersion technique of TiO$_2$ in mass should be established.
As Near Future Works

Extremely cost-effective process by powder metallurgy;

- **Direct Use of Sponge Ti blocks** as starting materials to fabricate high strength & ductility pure Ti material via solid-state processing

Katsuyoshi Kondoh and Tyrone Jones
Next-Generation Development of a Superior Grade Titanium Ti-6Al-4V Alloy via Oxygen Solid Solution Strengthening for Aerospace & Defense Applications

October 7-10, 2012 • Atlanta, Georgia, USA
Thank you for kind attention and Questions?

Prof. Dr. Katsuyoshi KONDOH
Vice Director of Joining and Welding Res. Inst.
Osaka University, JAPAN
Email; kondoh@jwri.osaka-u.ac.jp