Pediatric Disorders and Their Orthotic Management

Thomas V. DiBello CO
Dynamic Orthotics and Prosthetics LP

Outline
• Overview – CP/Orthotic Mgt.
• Orthotic Design
• Management of the Hip, Knee, Foot and Ankle
• Case

Overview - Cerebral Palsy
“The only action that a human can bring about is muscle contraction. This muscular contraction will cause movement that may in turn produce actions such as locomotion or speech. However any action must start as a thought.”

Warwick J. Peacock MD
Overview - Cerebral Palsy

- Injury to different brain control centers generate different types of functional loss but all contribute in different ways to three primary abnormalities of gait:
 - Loss of selective motor control
 - Impaired balance
 - Abnormal tone

Gage JR, Schwartz M

Overview - Cerebral Palsy

- Muscle Imbalance and Impaired Balance
 - May respond to orthotic management
- Abnormal Tone
 - Generally not amenable to management orthotically

Overview – Cerebral Palsy

- From an orthotic perspective, as we look at pathological gait we must remember that we are looking at a combination of cause and effect

Gage JR, Schwartz M
Overview – Cerebral Palsy
• Brain injury can interfere with gait in several ways causing:
 • Primary effects
 • Secondary effects
 • Tertiary effects

Pathological gait is a mixture of primary, secondary and tertiary abnormalities

Overview
• Primary Effect:
 • Occurs as a direct result of a brain injury Examples in PVM might be:
 • Loss of selective muscle control
 • Balance difficulties
 • Abnormal muscle tone

Overview
• Secondary Effect
 • Because the primary effects of brain injury imposes abnormal forces on the skeleton, neither bone nor muscle grow normally
 • These changes are not immediate
 • Muscles and bones grow slowly over time and these skeletal deformities emerge slowly and in direct proportion to the rate of skeletal growth
Overview

- **Tertiary Effects**
 - The *primary* and *secondary* effects of the brain injury burden the child with structural and dynamic abnormalities that make walking difficult
 - The child will develop "coping or compensatory mechanisms" to walk and increase energy consumption
 - These coping mechanisms represent the *tertiary* effects of brain injury

Gage JR, Schwartz M

Goal

- Identify *tertiary* abnormalities and define optimal orthosis for each patient

Characteristics of Pathological Gait in Cerebral Palsy

- In Cerebral Palsy
 - The muscle forces are neither appropriate or adequate as the result of
 - Muscle contracture
 - Poor body segment balance/or position
 - Poor selective motor control
 - Abnormal bone lever arms
Characteristics of Pathological Gait in Cerebral Palsy: Lever Arm Dysfunction

- Abnormal Bone Lever Arms:
 - Short Lever Arms
 - Flexible Lever Arms
 - Malrotated Lever Arms
 - Abnormal Pivot or Action Point
 - Positional Lever-Arm Dysfunction

Characteristics of Pathological Gait in Cerebral Palsy: Lever Arm Dysfunction

- Short Lever Arm:
 - Coxa Valga
 - Hip joint with excessive valgus reduces the length of the moment-arm from the center of rotation (hip-joint center) to the line of action of the muscle

- Hip lever arm is reduced by 25% as Glut. Med. insertion moves medially
 - Even though the m. force has remained the same the magnitude of the moment is reduced by 25%
 - Resultant gait comp. is upper body shift and pelvic drop to reduce demand on hip abductor

- Orthotic Goal – Block Hip Adduction, Stabilize Hip
- Orthosis - ??? Swash
Characteristics of Pathological Gait in Cerebral Palsy - Lever Arm Dysfunction

- **Flexible Lever Arm:**
 - Lever arm is not rigid enough to transmit force and therefore bends as the force increases.
 - Like trying to pry up a rock with a rubber cross bar.
 - Classic example: Child with spastic diplegia and a flexible pes valgus (mid-foot break).
- **Orthotic Goal –** Reestablish PF/KE Couple.
- **Orthosis –** AFO with DF Stop, PF Resist/Stop, AFO G/R F/A.

- **Malrotated Lever Arm:**
 - Most commonly torsional deformities of the long bones of the lower extremity.
 - In CP due to failure to remodel fetal anteversion, with resultant femoral torsion.
 - In spastic diplegia may lead to femoral anteversion and external tibia torsion (malignant malalignment syndrome).

- **Orthotic Goal –** Re-establish effective lever arm, block DF and reduce toe out.
- **Orthosis –** AFO S/A, G/R, G/R F/A.
Characteristics of Pathological Gait in Cerebral Palsy - Lever Arm Dysfunction

- Malrotated Lever Arm
- Femoral Antversion
- Orthotic Goal - Accommodate deformity, possibly reduce rate of progression
- Orthosis - Single Lateral upright HKAFO attached to AFO G/R

Characteristics of Pathological Gait in Cerebral Palsy - Lever Arm Dysfunction

- Unstable Fulcrum:
 - Hip subluxation or dislocation.
 - Even in the presence of adequate force and lever an effective moment cannot be generated.
 - Because of the subluxation or dislocation there is no stable fulcrum.
- Orthotic Goal – Post Op hip stabilization, ROM control
- Orthosis – Maple Leaf

Characteristics of Pathological Gait in Cerebral Palsy

- Positional Abnormalities:
 - Crouched gait in CP can be the result of a variety of causes and it is often complex and challenging to differentiate primary, secondary and tertiary effects as causes
 - This illustrates the biomechanical disadvantage the child is placed in by a knee flexion contracture
- AFO alone can’t overcome this disadvantage NOTE:CG
- Orthotic Goal - Stance Stability
- Orthosis – AFO G/R, Heel Wedge
Cerebral Palsy

Orthotic Treatment Goals

- To Correct or Prevent Deformity
- To Provide a Base of Support
- To Facilitate Training in Skills
- To Improve Efficiency in Gait

Condie and Meadows 1995

Cerebral Palsy - Treatment Goals

Correct or Prevent Deformity

- Flexible Deformities
 - Due to unbalanced muscle forces
 - Can be corrected passively
 - Orthoses can maintain corrected position

- Fixed Deformities
 - Due to shortened soft tissue and muscles cannot be passively corrected
 - Orthosis must accommodate deformity

Cerebral Palsy - Treatment Goals

- Provide a Base of Support
 - Stability in standing or sitting requires the center of mass be well positioned over the supporting area
 - AFO’s can be used to provide a stable base for standing and walking
 - Hip abduction orthoses may improve sitting stability by increasing the size of the base of support
Cerebral Palsy - Treatment Goals

- Facilitate Training in Skills
 - AFO’s directly influence the alignment of the body segments supported within the device
 - AFO’s influence hip, knee and ankle moments by manipulating the GRF
 - Stabilizing the ankle and foot allows therapy to focus training on strengthening and improved control over more proximal joints

Cerebral Palsy - Treatment Goals

- Improve Efficiency in Gait
 - Lower Limb Orthoses may improve gait efficiency by restoring the prerequisites of gait
 - Improved stance stability
 - Improved swing phase clearance
 - Improved limb positioning at terminal swing
 - Improved step length
 - Conservation of energy
 - Lower Limb Orthoses may also ↓ energy expenditure by ↓ the need for compensatory gait deviations

Cerebral Palsy - Treatment Goals

- Review - Efficacy of AFO Management of the Spastic Lower Limb
 - Van Gestel et al 2008 - Orthoses tested successfully improved gait pattern
 - Morris et al 2002 - Review of 450 children w/ CP in 28 studies concluded blocking PF improved gait efficiency
 - Maltais et al. 2000 - Blocking plantarflexion improves energy expenditure based upon O2 consumption
 - Romskes, Brunner 2000 - AFO’s improve pre-positioning for stance
 - Miller, Chambers 1999 - AFO’s improve stance stability
 - Ounpuu et al. 1996 - AFO’s improve clearance in swing phase
 - Abel et al. 1998 - AFO’s increase step length and walking speed
Cerebral Palsy - Spastic Hemiplegia

- **Type I**
 - Equinus only in swing phase (open kinetic chain)
 - Orthotic Goal
 - Improve swing phase clearance and pre-position ankle for IC
 - Orthotic Treatment
 - AFO PLS or SAFO PE (Long) Possibly SAFO PE (Short)

- **Type II**
 - Equinus persists in swing and stance and knee tends toward hyperextension during stance
 - Orthotic Goal
 - Stabilize ankle in stance and block knee hyperextension
 - Improve swing phase clearance and pre-position ankle for IC
 - Orthotic Treatment
 - Appropriately tuned SA AFO

- **Type III and IV**
 - Hip and knee involvement, may be associated w/ femoral antversion causing an internal rotational foot deformity
 - Orthotic Goal
 - Stabilize ankle at mid stance and create extension moment at knee
 - Improve swing phase clearance and pre-position ankle for IC
 - Orthotic Treatment
 - Requires pharmacological or surgical intervention and then GR AFO or SA AFO
Cerebral Palsy - Spastic Diplegia

- Spastic Foot and Ankle Equinus
 - Initial contact with forefoot causes GRFs to pass in front of the knee and hip joint causing
 - Excessive external knee extension moment
 - Hyperextension
 - Flexion moment at the hip
 - Orthotic Goal
 - Realign GRF with hip, knee and ankle joints
 - Orthotic Treatment
 - AFO SA (most effective with good ROM at hip, knee and ankle) or AFO with heel wedge

- Spastic Proximal Lower Limb Musculature
 - Knee and hip joints remain flexed during stance
 - GRF passes behind the knee
 - Increased external flexion moment causes excessive knee flexion and buckling
 - Orthotic Goal
 - Reestablish PF/KE couple
 - Orthotic Treatment
 - AFO GR or AFO SA (most effective with good ROM at hip, knee and ankle) or AFO with heel wedge

- Knee Ext/PF couple
 - Crouch gait/single bump
 - Dorsiflexion stop/double bump

Barefoot AFO

Hullin et al
Cerebral Palsy—Spastic Diplegia

- Foot and Ankle
 - Premature and prolonged external DF moments can cause the foot and ankle to buckle
 - This may cause hindfoot inversion or eversion and midfoot collapse and may lead to permanent deformity
- Orthotic Treatment
 - AFO SA or AFO GR
 - Goal
 - Stabilize ankle and support and realign boney segments of the foot

Cerebral Palsy—Spastic Diplegia

- Knee, Hip and Pelvis
 - Hip abduction
 - Apparent hip abduction — occurs when internal rotation occurs simultaneously with hip flexion
 - Femoral Antversion
 - Orthotic Treatment
 - Hip orthosis (swash)
 - Twister Straps (mild rotational problems)
 - Goal
 - Improve knee clearance

Cerebral Palsy—Spastic Diplegia

Ground Reaction AFO:

- df angle is critical
 - Optimize forward progression
 - Consider hamstring tightness
- Adjustability
 - anterior df stop
Cerebral Palsy
Spastic Diplegia

- Foot
 - In children with very mild symptoms or in the hypotonic child the foot may not be capable of maintaining normal alignment
 - The arches of the foot may collapse and permanent boney deformity may develop
- Orthotic Treatment
 - UCBL
 - Goal
 - Reestablish arches of the foot

Cerebral Palsy
Spastic Diplegia

- Tuning considerations
 - Knee Moments
 - Flexion
 - Extension
 - Shoe Modifications
 - Rockers etc.
 - Assist initiation of swing

Spina Bifida
Spina Bifida
- Myelomeningocele
 - Developmental defect of the spinal cord and vertebral arches
 - Most common in the lumbosacral region
 - Neurological deficit at and distal to the level of injury
 - Prevalence is 1/1000 live births
 - Slightly more common in females 1.3:1
 - $\frac{1}{2}$ w/ a child born w/ mm have a – 5% increased chance of 2nd child w/ a NTD
 - Hydrocephalus present 85%–90% of kids w/ MM
 - 80% of infants w/ MM have ventricular shunt

Spina Bifida
- Categorized by functional level of involvement
 - Thoracic/High Lumbar
 - Low Lumbar
 - High Sacral
 - Low Sacral

Spina Bifida Early Management
- Early Management
 - Determine level of any orthopedic deformities at birth
 - Assess - hip integrity, lower extremity contracture and foot deformities

Driscoll, Novak, Dias
Spina Bifida
Early Management
- Early Management
- Goal
 - Maintain joint alignment
 - Prevent deformity
 - Correct flexible deformities
 - Accommodate fixed deformities
 - Facilitate independent mobility and function
 - Protect the insensate limb

Spina Bifida
Thoracic/High Lumbar
- Typical Presentation
 - Hip Flex/Add – often (+) [L₁ - L₃]
 - Hip Ext - typically (-) [L₂–₅ - S₁]
 - Knee Ext - typically (-) [L₂–₅]
- Goal
 - Position trunk over pelvis and lower limbs

Spina Bifida
Thoracic/High Lumbar
- Ambulatory Potential
 - Although some form of ambulation is possible during early childhood and adolescence, only a small percentage of these patients will ambulate as an adult
 - Due in part to
 - Hip and knee flexion contractures
 - High energy cost of upright mobility

Dias, 2001
Spina Bifida

Short Term Ambulation

Why do they stop???
- ↑ energy expenditure
- obesity
- height
- contracture
- motivation

When do they stop?
- Second decade of life

-Sillwell and Menelaus

Spina Bifida

Thoracic/High Lumbar

- Standing Frame
 - First standing orthosis
 - Consider at about 12 months of age
 - Use w/ AFO S/A to avoid development of varus or valgus deformities of foot and ankle
 - Assists with:
 - Postural Control
 - Trunk Strength
 - Balance and righting reactions (how to fall)
 - Hip joint formation
 - Improved motor skills

Spina Bifida

Short Term Ambulation

Benefits of standing and walking for patients above L4
- ↓ joint contracture
- ↑ bowel and bladder function
- ↑ bone density
- ↑ upper ext. strength
- ↑ independence
- ↑ social development

-CAPO
Spina Bifida
Thoracic/High Lumbar

- Parapodium
 - Patient with poor sitting balance
 - Aprox 2 years of age
 - Use with forearm crutches or walker and swing to gait

Spina Bifida
Thoracic/High Lumbar

- Rochester Parapodium
 Short Term Ambulation

Spina Bifida
Thoracic/High Lumbar

- Swivel Walker
 Short Term Ambulation
Spina Bifida
Thoracic/High Lumbar

- RGO
 - Patient with good hands free sitting balance and minimal spinal deformities
 - Permits Reciprocal gait without Gluts or good Hip Flex
 - Hip flexion contracture up to 35°
 - Knee flexion contracture up to 45°
 - Hip flexion contracture ≥ 30° → ↓ stride length → ↑ energy consumption
 - Katz et al (1997) demonstrated that RGO reduced energy consumption as compared to HKAFO

Spina Bifida
Thoracic/High Lumbar

- RGO
 - Patient with good hands free sitting balance and minimal spinal deformities
 - Permits Reciprocal gait without Gluts or good Hip Flex
 - Hip flexion contracture up to 35°
 - Knee flexion contracture up to 45°
 - Hip flexion contracture ≥ 30° → ↓ stride length → ↑ energy consumption
 - Katz et al (1997) demonstrated that RGO reduced energy consumption as compared to HKAFO

Spina Bifida
Short Term Ambulation

RGO
- hip flexion = contra. hip ext
- hip ext = contra. hip flex
- trunk extension
- weight shift
Spina Bifida
Thoracic/High Lumbar

- HKAFO
 - Appropriate when a reciprocal gait is not a goal
 - Pelvic band with inferior and superior extensions → ↑ lever arm → improved end point control → ↑ forward flexion of thorax and hips and ↓ lumbar lordosis
 - Controls LE Rotation, Joint motion in sagittal plane, lateral trunk lean
 - Utilize a reverse walker or loftstrand crutch for swing to or swing through gait

Spina Bifida
Low Lumbar

- Usually Active
 - Iliopsoas (L₁₋₂)
 - Quads (L₂₋₄)
 - Hamstrings (L₁₋₂)

- Usually Absent
 - Glut's (L₄₋₅ – S₂)
 - Gastox/Soleus (S₁ – S₂)
 - Ant Tib (L₁₋₁₃)

Spina Bifida - Low Lumbar

- 79% remain community ambulators as adults
- Typical Gait
 - Weak Glut max → anterior pelvic tilt, hip flexion and pelvic obliquity
 - Weak Glut med → lateral trunk lean
 - Weak ankle PF’s → ↑ed hip and knee flexion, ↓ velocity and step length
 - Swing through gait is more efficient in this group than reciprocation (Moore et al, 2001)
Spina Bifida - Low Lumbar

- KAFO
 - Improved control of knee varus and valgus angulations
 - Various knee joints provide different motion control at the knee joint
 - Quads at least ≥ 3+/5 = free knee
 - Quads ≥ 3+/5 = locking knee
 - Dial Locks – used to accommodate knee flexion contractures

Spina Bifida - Low Lumbar

- Single Lateral upright HKAFO
 - Can be used to either internally or externally rotate the limb to improve foot progression angle
 - May provide proprioceptive sensory input to stabilize lower limb

Spina Bifida Low Lumbar

- Ground Reaction AFO
 - Appropriate
 - With good LE alignment
 - Can correct < 5° knee flexion contracture
 - Must accommodate > 5° contracture at the knee
 - Creates a knee extension moment
Spina Bifida - Low Lumbar

• AFO S/A
 • Most common orthotic device for children w/ MM
 • Blocks ankle DF and PF, corrects flexible foot deformities
 • Good swing phase clearance, good stability at mid stance
 • Indication
 • Quads ≥ 3/5
 • HS ≥ 2+/5

Spina Bifida - Low Lumbar

• In children w/ Low Lumbar MM and tibial torsion > 20°, AFO effectiveness was compromised (Vankowski et al, 2000)
• Presence of 30° of external tibial torsion → a 25% reduction in knee axis lever arm
• We would add single lateral upright to the AFO to rotate foot inward and re-establish the PF/KE Couple

Spina Bifida - High Sacral Level

• Typically have active
 • Hip Ext
 • Hip Flex
 • Hip Abd
 • Hip Add
 • Knee Flex
 • Knee Ext

• Typically Absent
 • Dorsiflexors (+/-)
 • Plantarflexors (-)
Spina Bifida - High Sacral Level

- 94% of these children remain community ambulators as adults
- Typically ambulate w/ S/A AFO’s s/ mobility aids
 - AFO F/A is only indicated w/ DF control strap, to block excessive DF and prevent crouched gait

Spina Bifida - Low Sacral Level

- Complete innervation of hip and knee musculature
- Ankle PF and DF are present but they may be weak
- Relatively normal movement around the hip
- Orthosis choice can be difficult
 - S/A AFO - PF’s < 3/5
 - F/A AFO w/ DF Ctrl strap may be OK
 - SAFO – PF’s > 3/5 (no crouch)
 - UCBL – Pronated mid-foot

Spina Bifida

Short Term Ambulation
- Thoracic and upper lumbar levels
- Childhood ambulation

Long Term Ambulation
= L4 and below
- Full quad innervation
Spina Bifida

Long Term Ambulation

- Knee Ext/PF couple
 - crouch gait/single bump
 - dorsiflexion stop/double bump

Barefoot

AFO

-Hullin et al

Spina Bifida

Long Term Ambulation

- Knee Ext/PF couple
 - Tuning considerations
 - Knee Moments
 - Flexion
 - Extension
 - Shoe Modifications
 - Rockers etc
 - Assist initiation of swing

Shoe Modifications

Spina Bifida

Long Term Ambulation

- Insensate Feet
 - Pt and family diligence
 - Always check skin integrity
 - Orthosis occasionally taken away
Muscular Dystrophy

Duschenne Muscular Dystrophy
Progressive
1) Independent ambulation
2) Orthotic assisted ambulation
3) Wheelchair mobility/contracture management

Muscular Dystrophies
- Duchenne Muscular Dystrophy
 - Rapidly progressive
- Becker Muscular Dystrophy
 - More mildly progressive
Duchenne Muscular Dystrophy

- Slightly delayed at 3 to 5 years
- Proximal m. weakness causing limitations in running, jumping and climbing stairs
- Proximal to distal progression of m. weakness leads to
 - Hyperlordosis
 - Equinus
 - M. contractures

Duchenne Muscular Dystrophy

- Early Ambulatory Stage
 - Contractures
 - Develop due to m. imbalance and gradual fibrosis within the muscle
 - Gait
 - Large knee and hip extensor weakness associated with early functional decline
 - Equinus develops due to m imbalance (wk ant tib and peroneals) and need to keep GRF ahead of the knee to create knee extension and stability

Sutherland et al. 1980; Khodadadeh et al. 1986

Duchenne Muscular Dystrophy

Early Ambulatory Phase

- Delayed, clumsy, falls
- Gower’s sign
 - prox muscle weakness
- Pseudohypertrophy
 - calves
- Active stance plantarflexion 2° to quad weakness
- Anterior pelvic tilt and hyperlordosis 2° to hip ext weakness
Duchenne Muscular Dystrophy

- Early Ambulatory Stage
 - Providing AFO to correct toe walking is detrimental to the child's mobility and ability to utilize the GRF for stability
 - Combination of passive stretching and AFO's is more effective than passive stretching alone in delaying contracture and prolonging independent ambulation
 - Night AFO's should be offered when the child shows signs of toe walking and/or knee extended ankle range is reduced

- Late Ambulatory Stage
 - As soon as independent ambulation ceases
 - Coupled with surgical releases
 - Light weight KAFOS
 - Prolong ambulation ≈ 2 years
 - ↓ severity of scoliosis
 - ↑ cardiopulmonary function
 - ↓ obesity
 - Slows disease progression

Typical Gait Pattern

- Wide base shuffle
- IC - flat foot
- LR - ext knee
- TS & e a r l y heel rise
- Sw - clearance?
Duschenne Muscular Dystrophy

Wheelchair mobility/contracture management
- TLSO/scoliosis concerns
 - Cardiopulmonary concerns
- Hip, knee and ankle contractures progress
 - Continue solid AFO's/night splints
 - Comfort ↑ tolerance
 - Extreme equinovarus hurts

Questions

Thank You