Difficult Cannulation Techniques and Tips

Paul R. Tarnasky
Methodist Dallas Medical Center

Disclosures Regarding Cannulation

• Paucity of data
• Data are operator dependent
• Many variables & individual preferences
• More of an art than science
• My personal experience & opinions

A fool takes no pleasure in understanding, but only in expressing opinion.

Proverbs 18:2
Overview

• Definitions and Benchmarks
• Techniques for cannulation
 – Standard
 – Advanced
• Difficult cannulation scenarios
• Options for failed cannulation
• Methods to prevent complications

What is Cannulation?

• Injection of contrast only for diagnostic purposes – obsolete
• Deep cannulation with guidewire – necessary for therapy
• Endoscopic
• Retrieving
• Cutting
• Plumbering
Define Difficult

Condition(s) that make it hard to accomplish

Define Difficult

Requires much labor, skill, or planning to be performed successfully
Difficult Conditions & Skill

Cannulation Difficulty

- Pancreatic – main papilla
- Bile duct stone / stricture
- Impacted stone
- Bile leak
- Sclerosing cholangitis
- Neoplasia
- Duodenal Diverticulum
- Pancreatic – minor papilla
- s/p Billroth II, Whipple
- No fluoroscopy
Cannulation Benchmarks

- ≈ 20% failed biliary cannulation using standard techniques
- > 95% success +/- advanced techniques
- Success related to operator volume
- Difficult Cannulation definition and associated with increased risk *
 - Time (> 5 min)
 - Repeated attempts (> 5)
 - Inadvertent pancreatic duct (> 2)

PEP > 10%

*Halttunen, Scand J Gastroenterol 2014

Cannulation Challenges

- Access to papilla
 - Gastric outlet obstruction
 - Postoperative (BII, Whipple, RY)
- Papilla
 - Flat papilla
 - Redundant periampullary folds
 - Periampullary edema / inflammation
 - Periampullary diverticula
 - Impacted stone
 - Neoplasia
Cannulation Techniques

Standard
• Catheter & Contrast
• Wire - Guided +/- Operator Control
• Pancreatic stent
• Double – Wire
• Needle Knife over Impacted Stone

Advanced
• Needle Knife Access Sphincterotomy
• Minor papilla
• Billroth II
• Whipple
• No Fluoroscopy

Expertise & Risk

Catheter and Contrast Injection

Tarnasky, Am J Gastroenterol 2007
Guidewire Cannulation

- Contrast Injection To Facilitate
- Papilla
- Duct Cannulation
- Contrast Injection To Confirm
- Catheter
- Guidewire

Tarnasky, Am J Gastroenterol 2007

GENTLE Cannulation

- Guidewire before Contrast
- Envision duct direction
- Never force it
- Take control of wire
- Limit attempts
- Ensure drainage

- Guidewire before Contrast
- Endoscopist-controlled
- Never force it
- Tip cannulation
- Limit attempts
- Expertise

Tarnasky, Am J Gastroenterol 2007;102:2154–2156
Tarnasky, Gastrointest Endosc 2012;76:919-920
Can a Wire-Guided Cannulation Technique Increase Bile Duct Cannulation Rate and Prevent Post-ERCP Pancreatitis?: A Meta-Analysis of Randomized Controlled Trials

<table>
<thead>
<tr>
<th>Study (reference)</th>
<th>Primary cannulation rate, n/tot (%)</th>
<th>Precut performed, n/tot (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SM</td>
<td>WM</td>
</tr>
<tr>
<td>Lella (8)</td>
<td>195/200 (97.5)</td>
<td>197/200 (98.5)</td>
</tr>
<tr>
<td>Artifon (22)</td>
<td>108/150 (72)</td>
<td>132/150 (88)</td>
</tr>
<tr>
<td>Lee (24)</td>
<td>111/150 (74)</td>
<td>120/150 (80)</td>
</tr>
<tr>
<td>Bailey (9)</td>
<td>156/215 (72.5)</td>
<td>167/215 (77.7)</td>
</tr>
<tr>
<td>Katsinelos (23)</td>
<td>89/165 (53.9)</td>
<td>136/167 (81.4)</td>
</tr>
<tr>
<td>Total</td>
<td>659/880 (74.9)</td>
<td>752/882 (85.3)</td>
</tr>
</tbody>
</table>

SM, standard method; WM, wire-guided method.

WGC also associated with reduced PEP

Cennamo et al., Am J Gastroenterol 2009; 104:2343-2350

Guidewire versus conventional contrast cannulation of the common bile duct for the prevention of post-ERCP pancreatitis: a systematic review and meta-analysis

Justin Cheung, MD, FRCP, Kelvin K. Tooi, PhD, Wai-Leong Quan, MBBS, MRCP, James Y.W. Lau, MD, FRCS, Joseph J.Y. Sung, MD, PhD

• 5 papers plus 2 abstracts

Guidewire Cannulation

• Significantly higher cannulation success: 89% vs. 78%

• Significantly lower PEP: 3.2% vs. 8.7%

• Significantly lower PEP among those with inadvertent PD manipulation: 1.1% vs. 9.5%

Cheung et al., Gastrointest Endosc 2009; 70:1211-1219
Guide wire-assisted cannulation for the prevention of post-ERCP pancreatitis: a systematic review and meta-analysis

<table>
<thead>
<tr>
<th>Significant differences</th>
<th>GWC</th>
<th>CAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall PEP</td>
<td>3.5%</td>
<td>6.7%</td>
</tr>
<tr>
<td>Cannulation Success</td>
<td>83.6%</td>
<td>77.3%</td>
</tr>
<tr>
<td>Need for Precut</td>
<td>9.3%</td>
<td>12.4%</td>
</tr>
<tr>
<td>PEP with Inadvertent PD</td>
<td>1.7%</td>
<td>8.7%</td>
</tr>
<tr>
<td>PEP without Pancreatic Stents</td>
<td>2.4%</td>
<td>10.2%</td>
</tr>
</tbody>
</table>

Endoscopy, 2014

Pancreatic Guidewire Technique

- **Single Pancreatic GWT**
 - Catheter/Papillatome without 2nd guidewire

- **Double GWT** – Pancreatic guidewire then
 - Catheter/Papillatome loaded with 2nd guidewire

- **High PEP if no PD stent**
 - 23% vs 3% from RCT (Ito, 2010)
 - 22% vs 14% from RCT when c/t fistulotomy (Angsu..., 2012)
 - 38% from RCT when c/t TPP (Yoo 2013)
 - 30% after failed PD stenting (Ito, 2014)
 - 29% if no PD stent (Nakahara, 2014)
Pancreatic Guidewire Technique

• First described by Dumonceau et al. in abstract form (1998)
• Maeda 2003
• Draganov 2005
• Ito WJG 2008
• Herreros de Tejada (2009) RCT

Needle Knife over Stone
An Analysis of the Factors Associated With the Development of Complications in Patients Undergoing Precut Sphincterotomy: A Prospective, Controlled, Randomized, Multicenter Study

Gianpiero Manes, MD; Pietro Di Giorgio, MD; Alessandro Repici, MD; Giampiero Macarri, MD; Sandro Ardizzone, MD and Gabriele Bianchi Porro, MD

- Low-risk biliary indications
- Randomized to early precut vs continued attempts if attempt to cannulate:
 > 10 min and/or >4 inadvertent PD injections
- Used fistulotomy technique
- PD injections risk factor for PEP
- ↓ PEP after early precut 2.6% vs 14.9%

Manes et al., Am J Gastroenterol 2009;104:2412-2417

Precut sphincterotomy, repeated cannulation and post-ERCP pancreatitis in patients with bile duct stone disease

Pier Alberto Testoni*, Antonella Giussani, Cristian Vailati, Sabrina Testoni, Milena Di Leo, Alberto Mariani

- Retrospective study (9 yrs) in low-risk patients
- Varied cannulation techniques
- Fistulotomy precut – overall in 8.5% of patients

Table 2
Pancreatitis rates in relation to the number of attempts at cannulation, with and without precutting.

<table>
<thead>
<tr>
<th>Cannulation attempts</th>
<th>Pancreatitis rates</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>without precutting</td>
</tr>
<tr>
<td></td>
<td>with precutting</td>
</tr>
<tr>
<td>≥10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Testoni et al., Dig Liv Dis 2011;43:792-796
Access Sphincterotomy

- Transpancreatic precut
- Needle knife fistulotomy
- Needle Knife freehand from papilla
- Needle Knife over pancreatic guidewire
- Needle Knife over pancreatic stent
- Ampullectomy
Does leaving a main pancreatic duct stent in place reduce the incidence of precut biliary sphincterotomy-associated pancreatitis? A randomized, prospective study

Sang-Woo Cha, MD, Wesley D. Leung, MD, Glen A. Lehman, MD, James L. Watkins, MD, Lee McHenry, MD, Evan L. Fogel, MD, Stuart Sherman, MD

TABLE 2. Frequency of precut sphincterotomy-associated pancreatitis

<table>
<thead>
<tr>
<th>Group</th>
<th>No. of pancreatitis/total no. of patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stent</td>
<td>2/46 (4.3)</td>
</tr>
<tr>
<td>Stent removed</td>
<td>10/47 (21.3)</td>
</tr>
<tr>
<td>No stent</td>
<td>8/58 (13.8)</td>
</tr>
<tr>
<td>Total</td>
<td>20/151 (13.2)</td>
</tr>
</tbody>
</table>

TABLE 3. Frequency and severity of precut sphincterotomy-associated pancreatitis

<table>
<thead>
<tr>
<th>Severity of pancreatitis</th>
<th>Stent (n = 46)</th>
<th>Stent removed (n = 47)</th>
<th>No stent (n = 58)</th>
<th>Total (N = 151) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>9 (45)</td>
</tr>
<tr>
<td>Moderate</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>6 (30)</td>
</tr>
<tr>
<td>Severe</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5 (25)</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>10</td>
<td>8</td>
<td>20 (100)</td>
</tr>
</tbody>
</table>

*One patient died of complications of severe necrotizing pancreatitis.

Needle-knife precut papillotomy with a small incision over a pancreatic stent improves the success rate and reduces the complication rate in difficult biliary cannulations

Kensuke Kubota · Takamitsu Sato · Shingo Kato · Seitaro Watanabe · Kunihiro Hosono · Noritoshi Kobayashi · Kantaro Hisutomi · Nobuyuki Matsumashi · Atsushi Nakajima

<table>
<thead>
<tr>
<th>2004-2006</th>
<th>2007-2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO PPS</td>
<td>+ PPS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>NKPP</th>
<th>NKPP-SIFS</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>36</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Success rate</td>
<td>31/36 (86.1 %)</td>
<td>95/98 (96.9 %)</td>
<td>0.0189</td>
</tr>
<tr>
<td>Overall complication rate</td>
<td>12/36 (33.3 %)</td>
<td>7/98 (7.1 %)</td>
<td><0.001</td>
</tr>
<tr>
<td>Bleeding</td>
<td>3/36 (8.3 %)</td>
<td>0/98 (0 %)</td>
<td>0.0036</td>
</tr>
<tr>
<td>Pancreatitis</td>
<td>7/36 (19.4 %)</td>
<td>6/98 (6.1 %)</td>
<td>0.0208</td>
</tr>
<tr>
<td>Perforation</td>
<td>1/36 (2.8 %)</td>
<td>1/98 (1 %)</td>
<td>NS</td>
</tr>
<tr>
<td>Cholangitis</td>
<td>1/36 (2.8 %)</td>
<td>0/98 (0 %)</td>
<td>NS</td>
</tr>
</tbody>
</table>

J Hepatobiliary Pancreat Sci, 2013
Transpancreatic Precut

- First described in 1999 (Goff)
- Cut is started in direction of bile duct but with guidewire in pancreatic duct

Guidewire-assisted Transpancreatic Sphincterotomy for Difficult Biliary Cannulation: A Prospective Randomized Controlled Trial

Jinfeng Zang, MD, Chi Zhang, MD, and Jinye Gao, MD

- Low – risk patients (mostly stones)
- No PD stents

TABLE 2. Outcomes of Sphincterotomy Techniques

<table>
<thead>
<tr>
<th></th>
<th>GATS (n = 73)</th>
<th>NKS (n = 76)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success rate</td>
<td>70 (95.9%)</td>
<td>64 (84.2%)</td>
<td>0.018</td>
</tr>
<tr>
<td>Cannulation time</td>
<td>193 (141-318)</td>
<td>485 (392-627)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Complications</td>
<td>7 (9.6%)</td>
<td>8 (10.5%)</td>
<td>0.85</td>
</tr>
<tr>
<td>Pancreatitis</td>
<td>5 (6.8%)</td>
<td>5 (6.6%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>1 (1.4%)</td>
<td>3 (3.9%)</td>
<td>0.62</td>
</tr>
<tr>
<td>Perforation</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- Advocated for small papillae
- Suggested as safe for even inexperienced

Surg Laparosc Endosc Percutan Tech, 2014
Sequential algorithm analysis to facilitate selective biliary access for difficult biliary cannulation in ERCP: a prospective clinical study

Difficult Biliary Cannulation

Fistulotomy OR DGW

\[\text{NKOPDS} \rightarrow \text{Pancreatic Stent} \]

Lee et al, BMC Gastroenterology 2014

Sequential algorithm analysis to facilitate selective biliary access for difficult biliary cannulation in ERCP: a prospective clinical study

<table>
<thead>
<tr>
<th>Early Precut Fistulotomy</th>
<th>Double Wire</th>
<th>NKOPDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF</td>
<td>DG</td>
<td>PPS</td>
</tr>
<tr>
<td>No. (%)</td>
<td>71 (50.7)</td>
<td>33 (23.6)</td>
</tr>
<tr>
<td>Success of biliary cannulation</td>
<td>67/71 (94.4%)</td>
<td>33/65 (50.8%)</td>
</tr>
<tr>
<td>First attempt</td>
<td>63 (88.7)</td>
<td>33 (47.8)</td>
</tr>
<tr>
<td>Second attempt</td>
<td>4/6 (66.7)</td>
<td>0</td>
</tr>
<tr>
<td>Failure</td>
<td>4 (5.6%)</td>
<td>0</td>
</tr>
<tr>
<td>Asymptomatic hyperamylasemia</td>
<td>5 (7)</td>
<td>3 (9)</td>
</tr>
<tr>
<td>PEP (mild/moderate/severe)</td>
<td>5/7 (5/2/9)</td>
<td>4/12 (1/2/9)</td>
</tr>
<tr>
<td>Bleeding</td>
<td>1 (1.4)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Perforation</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Lee et al, BMC Gastroenterology 2014
Low-Risk Difficult Cannulation

• Bile duct stone
• Bile duct stricture
• No h/o pancreatitis
• No pancreatic contrast

Consider Freehand NKAS or fistulotomy

High-Risk Difficult Cannulation

• SOD
• h/o pancreatitis
• PSC
• Pancreatic duct contrast
• Repeated PD guidewire
High-Risk Difficult BD Cannulation

Pancreatic Duct Guidewire

DGW
TPP
NKOGW

Attempt BDC OR NKOPDS
Pancreatic Stent

Duodenal Diverticulum

Challenges
- Filled with debris
- Difficult to locate papilla
- Difficult to discern direction of ducts
- Risk of perforation

Strategies
- Focus on edge
- Identify intraduodenal segment of bile duct
- Endoclip placement
- Scope in diverticulum
- Use gastroscope +/- cap
- Pancreatic Guidewire and/or Stent
Duodenal Diverticulum

Billroth II Cannulation Challenges

- Access afferent limb
- Risk of bowel perforation
- Identify papilla
- Upside down approach to cannulation
Billroth II Approaches

• Careful intubation of afferent limb
• Consider EGD scope
• Wire – guided cannulation
 – Straight catheter
 – Papillatome turned upside down
• Double – wire technique

Billroth II Cannulation
Pregnancy: No Fluoroscopy

Failed Cannulation: Options

- Refer to another endoscopist
- EUS – guided access
- PTC +/- Rendezvous technique
- Try again later

If at first you don’t succeed
Try try again
Prophylaxis of post-ERCP pancreatitis: European Society of Gastrointestinal Endoscopy (ESGE) Guideline – Updated June 2014

- Routine use of rectal NSAIDS (100mg)
- Consider prophylactic 5F pancreatic stenting in high-risk scenarios
- Limit cannulation attempts
- Wire-guided cannulation +/- pancreatic guidewire as backup technique