Aging, Medications and Dysphagia
West Virginia Speech Language and Hearing Association Annual Conference, Bridgeport WV April, 2016

Disclosure

• University of Pittsburgh (salary)
• WVSHA honorarium
• NIH RO-1 (25% effort)
• No products
• Lots of biases favoring my patients

Prevalence of dysphagia by age

Altman et al., 2010. (raw data from National Hospital Discharge Summary, 2004-2005)
Most common dysphagia-related diagnoses

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>% with dysphagia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid and electrolyte disorder (266)</td>
<td>17.5%</td>
</tr>
<tr>
<td>Diseases of the esophagus (530)</td>
<td>15.1%</td>
</tr>
<tr>
<td>Ischemic Stroke (433-434, 436, 437.0, 437.2)</td>
<td>14.8%</td>
</tr>
<tr>
<td>Aspiration pneumonia (507)</td>
<td>12.0%</td>
</tr>
<tr>
<td>Urinary tract infection (599.0)</td>
<td>10.4%</td>
</tr>
<tr>
<td>Congestive heart failure (428.0, 2.9)</td>
<td>10.1%</td>
</tr>
<tr>
<td>Pneumonia NOS (480-487)</td>
<td>8.1%</td>
</tr>
<tr>
<td>Coronary atherosclerosis (414)</td>
<td>7.3%</td>
</tr>
<tr>
<td>Parkinson’s Disease (332.0-332.1)</td>
<td>4.6%</td>
</tr>
<tr>
<td>Alzheimer disease (331.0)</td>
<td>4.6%</td>
</tr>
</tbody>
</table>

Account for >1/2 of all Dysphagia-related hospitalizations

Altman et al., 2010: National Hospital Discharge Summary

Increased risk of mortality in patients with dysphagia

<table>
<thead>
<tr>
<th>Dysphagia-related diagnosis</th>
<th>Relative Risk of death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of rehabilitation procedure</td>
<td>13.7*</td>
</tr>
<tr>
<td>Coronary atherosclerosis</td>
<td>2.6**</td>
</tr>
<tr>
<td>Acute & chronic respiratory failure</td>
<td>0.9**</td>
</tr>
<tr>
<td>Aspiration pneumonia</td>
<td>0.9*</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>0.1*</td>
</tr>
<tr>
<td>Septicemia</td>
<td>0.5***</td>
</tr>
<tr>
<td>Coronary atherosclerosis (414)</td>
<td>2.6</td>
</tr>
<tr>
<td>Parkinson’s Disease (332.0-332.1)</td>
<td>1.1</td>
</tr>
<tr>
<td>Alzheimer disease (331.0)</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Relative Risk: Patients with the disease AND DYSPHAGIA are x times more likely to die than patients WITHOUT DYSPHAGIA

* p < .001
** p < .01
*** p < .05

Homeostasis

- Maintenance of a constant, stable condition
- Organ systems maintain homeostatic equity
- Baseline
 - Few resources used to maintain homeostasis
- Examples
 - Digestion, fluid/electrolyte balance (hydration)
 - Temperature regulation, cardiovascular functions
Homeostenosis

- The characteristic, progressive constriction of homeostatic reserve that occurs with aging in every organ system.
- With aging, physiologic reserves are increasingly used to maintain homeostasis
 - Declining reserves left for meeting new challenges

Homeostenosis

More reserve for emergency → Less reserve for emergency

Available reserve for WHEN WE NEED IT

Start functional

Amount of reserve used to maintain homeostasis

Young → Age → Old

Homeostenosis

More reserve for emergency → Less reserve for emergency

Available reserve for WHEN WE NEED IT

Start functional

Amount of reserve used to maintain homeostasis

Young → Age → Old

Disease

RESERVE DEPLETED
Brain & Nervous System

- Physiologic changes:
 - Axonal degeneration (fewer neurons)
 - Apoptosis
 - Synaptic decline in some regions, growth in others
 - Atherosclerosis, diminished perfusion
 - Declining acetylcholine, dopamine production
 - Slowed conduction velocity

Halter et al., 2009; Lauretani, et al., 2006
Cognition

![Mean MMSE (9-12 years education)]

- Data from: Crum et al., 1993

Musculoskeletal system

- Reduced muscle mass
 - Sarcopenia
 - Vascular, mitochondrial changes; oxidative stress
- Reduced strength

![Calf muscle mass (mg/cm³)]

- Male:
 - 20 years old: 64 mg/cm³
 - 80 years old: 68 mg/cm³
- Female:
 - 20 years old: 66 mg/cm³
 - 80 years old: 70 mg/cm³

Halter et al., 2009; Lauretani, et al., 2006
Digestive System

- Symptoms in healthy aging subjects
 - Diminished esophageal motility
 - Gastroesophageal reflux
 - 35% heartburn, regurgitation, chest pain, dysphagia
 - Incompetence of GE junction
 - Decreased gastric clearance
 - Colonic problems

Halter et al., 2009

Risks for dysphagia in elderly

- Hospitalized patients
 - Pulmonary, renal disease, diabetic neuropathy
 - CHF
 - Primary neurological diagnosis
 - Inadequate oral hygiene
 - Altered mental status

Iatrogenic conditions in the elderly

- Hospitalization
 - 5 times risk of contracting iatrogenic conditions
 - 35% chance of functional decline
- Conditions that predispose to more illness
 - Added medications
 - Delirium
 - Sleep deprivation
 - Malnutrition and dehydration

Halter et al., 2009
Iatrogenic conditions in the elderly

- Nosocomial infections
 - Pneumonia, UTI
 - C. difficile diarrhea
- Gastric colonization
 - In scenario of increased GE reflux
- Safety issues

Halter et al., 2009

Iatrogenic risk factors in aging

- Postoperative sensorimotor impairments
- Predispose to dysphagia
 - Anterior cervical fusion*
 - Hardware issues
 - Thyroidectomy, carotid endarterectomy
 - Laryngeal nerves (thyroid)
 - Vagus itself (CEA)

*Krislovich, et al., 2000

Iatrogenic risk factors in aging

- Postoperative sensorimotor impairments
 - Predispose to dysphagia
 - Esophagectomy**
 - Vagus, phrenic n. injuries
 - Aortic root, arch, valve repairs
 - Recurrent laryngeal nerve (left)
 - Coronary artery bypass grafting
 - On pump vs. off pump

**Atkins, et al., 2007
Other iatrogenic risk factors in aging

- Airway manipulation
 - Mechanical ventilation
 - Endotracheal intubation
 - Tracheostomy
- Post-anesthesia clearance
 - Medication elimination half life
- Medication side effects

Swallowing changes with aging

- Reduced propulsive forces
- Later onset of pharyngeal activity
 - Airway closure
- Cricopharyngeal noncompliance
- Diminished sensory function
 - Oral → pharyngeal uncoupling
 - Reduced cricopharyngeal compliance

What do these changes mean?

- What is “normal” is different
 - “Norms” are historically “young” norms
 - Aging patients have different baselines
- Disease is a greater disruptor
- Patient has less available reserve
- Aging interaction with disease
 - Age related change are normal
 - Disease related change is treatable
 - The ultimate goal is the baseline...
 - Which is the patient with age related changes
• Aging adds unique risks to all systems
• Its effects should be apportioned along with
 • Disease effects
 • Iatrogenic effects
 • Etc.
• And... we are all going to be there some day...
 • What would we do if the patient was us?

Medications and their effects

Medications Affecting Swallowing
• What to look for?
 • Indications
 • Mechanism of action
 • Side effects (adverse effects)
 • Elimination half-life
• Use a good pharma database
 • Micromedex ®
 • Epocrates ®
Elimination half-life

- The duration required for clearance of one-half of the drug from the body
 - Target organ
 - Liver, kidney primarily

Elimination half-life

- Long half-life (6 hours), 1 dose
- Short half-life (1 hour), Dosage, q 6h

Elimination half-life

- Short half-life
- Long half-life - accumulation

(c) 2016 James L Coyle except as otherwise attributed
Mental Status Changes

- EtoH
- Antianxiety (benzo.s-) (Ativan, Xanax)
- Anticholinergics (Benadryl)
- Antiepileptic (Dilantin, Tegretol, Klonopin)
- Antidepressants (tricyclics, SSRI’s)
- Antiemetics (metaclop. compazine)
- Antihistamines (beta blockers)

More →

Mental Status Changes

- Antiparkinson (amantadine, bromocriptine)
- Antipsychotics (thorazine, haloperidol)
- Antitussives (codeine, dilaudid)
- Cardiac (Lanoxin)
- Decongestant (ephadrine, pseudo-)
- H2 antagonist (Zantac, Tagamet)
- Hypnotics (barbit., benzo-s.)

More →

Skeletal muscle function

- Muscle relaxants
 - Benzodiazapines, Flexeril
- Narcotic analgesic (opioids)
 - Neuromuscular transmission, CNS activity
Coordination

- Benzodiazepines, sedatives
 - Aphasia reported
- Tardive dyskinesia
 - Antipsychotics
- Steroid inhalants

Smooth Muscle Function

- **Inhibitory**
 - Anticholinergic, Tricyclic antidepressant, Calcium channel blockers, Alcohol
- **Excitatory**
 - Cholinergic agonists (Ach-esterase inhibitors, etc.)

Decrease LES resting pressure

- Cholecystokinin, sekretin, progesterone, glucagon, neurotensin, dopamine, atropine, butylscopolamine, theophylline, nitrates, alcohol, fat, chocolate
- Barbiturate, cigarettes, benzo., Ca channel blockers (cardizem), caffeine, anticholinergics
Increase LES resting pressure

- Antacids (tums)
- Beta blockers (stimulate Ach release)
- Cholinergics (mimics acetylcholine)
- Prokinetics (increase Ach release)
- May worsen symptoms

Xerostomia

- Anticholinergics, some antiemetics, antihypertensives (clonidine, reserpine), ACE inhibitors, some antihistamines, diuretics, opiates, antipsychotics

Medications Affecting Swallowing

- Mechanical Dysphagia
 - Largely oral medications producing esophageal ulceration
 - Enteric coated tablets
 - Prokinetics
 - Increase LES resting pressure
- Neurogenic Dysphagia
 - Antipsychotics, botulinum toxin
Esophageal Injury

- Bedtime medications, insufficient fluid with pills, supine position, size of pills, left atrial enlargement, thoracic surgery, advanced aging, esophageal motility disorders

Mimicking signs: Cough

- Angiotensin converting enzyme (ACE) inhibitors
 - Produce unexplained cough in up to 20% of users
 - Increases substance P production

 - Trials under way to determine value in pneumonia prevention

Anorexia

- Chemotherapeutic agents, digitalis, fluoxetine, iron suppl., stimulants, decongestants, NSAID, K, SSRI, narcotic

- Loss of Taste

- Metallic Taste
Others

- NMJ Blockade (paralytics)
 - Botulinum toxin
 - Atracurium (mechanical ventilation)
- Induced myopathy (corticosteroids)
- Induced movement disorder (dyskinesia)
- Induced sensory abnormality

Medications-iatrogenic

- Antipsychotics*
 - 60% increase pneumonia risk in a case-control study of elderly patients
 - Risk in first week of treatment: 450% increase
 - Subsides (does not disappear) over time
 - Most events with atypical antipsychotics
 - Clozapine, Abilify, Risperdal
 - Extrapyramidal effects, sedation
 - Typical drugs: sedation (haloperidol, chlorpromazine
 *Knol, et al., 2008

Medications-iatrogenic

- Antipsychotics
 - Significant source of choking in psychiatric hospitals*
 - Movement disorders
 - Tardive dyskinesia → dysphagia
 *Carl & Johnson, 2006
Acid suppression medications

- Aggressive acid suppression may create conditions favoring pathogenesis of pneumonia*
 - PPI: >2 times increase in pneumonia risk, incidence
 - Ambulatory and hospitalized patients
 - H₂ blockers: increased risk (lower risk)
 - Sucralfate (Carafate) substitute

- CDC advisory: PPI and C. difficile

*Marik, 2001; Marik and Dhainaut, 2002; Lijmer et al., 2000; Egi, 2003; Hong et al., 2009

Questions?