Pitch ranking, pitch matching, and binaural fusion in children with bilateral cochlear implants: bringing research into clinical practice

Melanie Buhr-Lawler, Au.D.
Audiologist, Clinical Associate Professor
Dept. of Communication Sciences and Disorders
University of Wisconsin-Madison

Co-authors:
Ruth Litovsky, Ph.D.
Professor, Depts. of Communication Sciences and Disorders and Surgery/Otolaryngology
Director, Binaural Hearing and Speech Lab, Waisman Center, University of Wisconsin-Madison

Shelly P. Godar, M.A., CCC-A
Sr. Research Specialist, Lab Manager

Erica Ehlers, B.S.
Au.D./Ph.D. Graduate Student
Background

• **Bilateral** hearing \neq **binaural** hearing

• Why does binaural hearing matter?
 • Sound localization
 • Hearing in complex listening environments
Children with bilateral CIs show…

greater variability and poorer performance on localization and speech in noise tasks

NH1: 8.9°
Investigating this variability and poorer performance on binaural tasks
Cochlear implant studies via direct stimulation

Nucleus Implant Communicator (NICs)
- Bilaterally synchronized implants in the two ears
- Direct and precise control over each pulse
- Loudness balanced
- Pitch matched
- Vary stimulation levels, interaural cues
Current research
16 children with bilateral CIs ages 10-15 years

1. Pitch ranking
 • Rank order pitch of various electrodes along array in one ear

2. Pitch comparison
 • Compare pitch of electrodes between the two ears

3. Binaural fusion
 • Listen to simultaneous stimulation on the arrays in both ears and decide whether it produces one sound or two
Findings

16 children with bilateral CIs ages 10-15 years

1. **Pitch ranking**: All children rank ordered pitch consistent with the high → low, base → apex.

2. **Pitch comparison**: Some children with bilateral CIs perform similarly to adults with CIs in direct pitch comparison tasks.

3. **Binaural fusion**: Most children did not form a single auditory image from simultaneous bilateral stimulation.
What can we (clinicians) do?

1. Raise clinical awareness: **bilateral CIs** do not necessarily equal use of **binaural cues**

 - Electrodes may not be pitch-matched or loudness balanced between ears
 - Binaural timing, level, and fine structure cues are not necessarily preserved by the devices
 - Binaural pathways may have a critical period of development
What else can we (clinicians) do?

2. Use the bilateral mapping screens
 • Loudness balancing
 • Adjust for a centered auditory image

3. Aural (re) habilitation
 • Potential for improved localization and fusion over time
 • Practice localization

4. Counseling

5. Environmental modifications
 • Continue use of remote microphone technology

Quiet is ideal…

But unrealistic!
Future directions: our thoughts

• Processing strategies that aim to better preserve important binaural cues
• Fully synchronized processors
• Pitch matching in commercially available software
• Continue research on children throughout their lifespan
 • If processors and strategies can provide binaural cues, are children able to use them successfully?
Acknowledgements

Co-authors:
Ruth Litovsky, Ph.D.
Erica Ehlers, Au.D./Ph.D. student
Shelly Godar, M.A., CCC-A

Acknowledgement and thank you to:
Yi Zheng, Ph.D.
Alan Kan, Ph.D.
Ann Todd, Ph.D.
Corey Stoelb, AuD Graduate Student
Tanvi Thakkar, PhD Graduate Student

And, to NIH-NIDCD (R01 DC 008365) for supporting the research.

