The Role of Early Auditory Experience on the Development of Word-Learning Skills After Cochlear Implantation

Derek M. Houston, PhD
Indiana University School of Medicine
Support:
NIDCD Training Grant DC00012
NIDCD Research Grant DC006235
Hearing Health Foundation
David and Mary Jane Sursa Perception Laboratory Fund
IU Collaborative Research Grant
IU DeVault Otologic Research Laboratory

Faculty
Richard Miaymoto
Tonya Bergeson
Derek Houston
David Pisoni
Charles Yates

Postdocs
Jessica Beer
Irina Castellanos
Maria Kondaurova

Infant Lab Staff
Heidi Neuburger
Nancy Eastman
Crystal Spann
Casey Champ
Jennifer Schaffer
Kay Shollenberger

DeVault Lab Staff
Allison Ditmars
Sue Drummond
Sami Gharbi
Theresa Kerr
Angela Landrum
Linette Staley

Speech-language Pathologists
Bethany Gehrlein
Shirley Henning

Audiologists
Kelly Lormore
Ann Kalberer
Wendy Myres
Kim Wolfert
CI < 1 year?
CI < 1 year vs. 1-2 years

- Better outcomes for CI<1
 - Colletti et al., 2005, 2009, 2011
 - Dettman et al., 2007
 - Holman et al 2013
 - Holt & Svirsky, 2008
 - Houston et al., 2003
 - Houston et al., 2012
 - Houston & Miyamoto, 2010
 - Leigh et al., 2013
 - Miyamoto et al., 2005
 - Nicholas & Geers, 2013
 - Schauwers et al., 2004

- No Differences
 - Holt & Svirsky, 2008
 - Horn et al., 2007
 - Houston & Miyamoto, 2010
 - Leigh et al., 2013
 - Lesinski-Schiedat et al., 2004
 - Miyamoto et al., 2005
 - Schauwers et al., 2004
<table>
<thead>
<tr>
<th>CI < 1 year vs. 1-2 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better outcomes for CI<1</td>
</tr>
<tr>
<td>Colletti et al., 2005, 2009, 2011</td>
</tr>
<tr>
<td>Dettman et al., 2007</td>
</tr>
<tr>
<td>Holman et al., 2013</td>
</tr>
<tr>
<td>Holt & Svirsky, 2008</td>
</tr>
<tr>
<td>Houston et al., 2003</td>
</tr>
<tr>
<td>Houston et al., 2012</td>
</tr>
<tr>
<td>Houston & Miyamoto, 2010</td>
</tr>
<tr>
<td>Leigh et al., 2013</td>
</tr>
<tr>
<td>Miyamoto et al., 2005</td>
</tr>
<tr>
<td>Nicholas & Geers, 2013</td>
</tr>
<tr>
<td>Schauwers et al., 2004</td>
</tr>
<tr>
<td>No Differences</td>
</tr>
<tr>
<td>Holt & Svirsky, 2008</td>
</tr>
<tr>
<td>Horn et al., 2007</td>
</tr>
<tr>
<td>Houston & Miyamoto, 2010</td>
</tr>
<tr>
<td>Leigh et al., 2013</td>
</tr>
<tr>
<td>Lesinski-Schiedat et al., 2004</td>
</tr>
<tr>
<td>Miyamoto et al., 2005</td>
</tr>
<tr>
<td>Schauwers et al., 2004</td>
</tr>
</tbody>
</table>
CI < 1 year vs. 1-2 years

- Better outcomes for CI<1
 - Reynell Receptive
 - PLS Receptive and Expressive
 - RITLS Receptive and Expressive
 - Oral and Written Language Skills
 - Peabody Picture Vocabulary Test
 - Categories of Auditory Performance IT-MAIS
 - Audiovisual Association
 - Babbling
 - DEAP
 - Speech Intelligibility Rating

- No Differences
 - CNC
 - LNT
 - Mr. Potato Head Task
 - Speech Discrimination
 - Reynell Expressive
Word Learning Experiment
(Houston, Stewart, Moberly, Hollich, & Miyamoto, 2012, Dev Sci)

• Does early auditory experience lead to better word learning?

• Subjects
 – Age at CI: 6.4 – 20.6 mos
 – Pre-CI aided PTA: 58 – 90 dB

• Findings
 – More residual hearing \rightarrow better word learning
 – Controlling for residual hearing, age at implantation \rightarrow better word learning
Today’s Analyses

• Narrower age-at-CI range
 – Early (10): 6.4 – 11.8
 – Late (10): 12.2 – 15.6
• Groups equated for pre-CI PTA and other demographic variables
Demographic Variables for Early and Late CI

<table>
<thead>
<tr>
<th></th>
<th>Early CI (10)</th>
<th>Late CI (10)</th>
<th>Sig diff?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at CI (mos)</td>
<td>9.6 (6.4-11.8)</td>
<td>14.3 (12.2-15.6)</td>
<td>Yes</td>
</tr>
<tr>
<td>Pre-CI aided PTA (dB)</td>
<td>87 (82-90)</td>
<td>88 (82-90)</td>
<td>No</td>
</tr>
<tr>
<td>Communication Mode</td>
<td>7 OC 3 TC</td>
<td>6 OC 4 TC</td>
<td>No</td>
</tr>
<tr>
<td># Bilateral at test</td>
<td>2</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Hearing age at test (mos)</td>
<td>15.8 (10.8-20.8)</td>
<td>14.8 (10.3-20.3)</td>
<td>No</td>
</tr>
<tr>
<td>Maternal Education (yrs)</td>
<td>15.0 (12-20)</td>
<td>13.8 (12-18)</td>
<td>No</td>
</tr>
</tbody>
</table>
IUSM Infant Language Lab
Stimuli & Procedure
Performance on Word-Learning Task

- Mean Longest Look (s)
 - Target
 - Nontarget

<table>
<thead>
<tr>
<th></th>
<th>Early</th>
<th>Late</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nontarget</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* indicates a significant difference.
Correlations 3-4 yrs post-CI

<table>
<thead>
<tr>
<th></th>
<th>Vocab (PPVT)</th>
<th>Rec Lang (PLS-aud)</th>
<th>Exp Lang (PLS-exp)</th>
<th>Speech Perc (LNT-words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word Learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson’s r</td>
<td>.50*</td>
<td>.53*</td>
<td>.47*</td>
<td>.19</td>
</tr>
<tr>
<td>N</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>

* p<.05 + p<.1
Partial Correlations
(controlling for age at CI and residual hearing)

<table>
<thead>
<tr>
<th>Word Learning</th>
<th>Vocab (PPVT)</th>
<th>Rec Lang (PLS-aud)</th>
<th>Exp Lang (PLS-exp)</th>
<th>Speech Perc (LNT-words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson’s r</td>
<td>.60*</td>
<td>.70**</td>
<td>.59*</td>
<td>.21</td>
</tr>
<tr>
<td>N</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>

** p<.01 * p<.05
Conclusions

• No evidence so far that CI < 1 year leads to better hearing or speech perception than CI 1 – 2 years
• CI < 1 year leads to better novel word-learning skills and probably other auditory integration skills
• Early word-learning skills are important for language outcomes
Future Directions

- Keep looking at speech perception but don’t stop there.
- Investigate why CI < 1 year leads to better word learning
 - Better auditory-visual integration?
 - How might that relate to their communicative interactions?
Parent-Infant Eyetracking (PIE)
35 mos old; 15 mos CI use
Parent-Infant Eyetracking (PIE)

- IU School of Medicine
 - Irina Castellanos, PhD
 - Tonya Bergeson, PhD
 - David Pisoni, PhD
 - Heidi Neuburger, MA, CCC-A

- IU – Bloomington Psychology and Computer Science
 - Chen Yu, PhD
 - Linda Smith, PhD
 - David Crandall, PhD
 - Seth Foster
 - Steven Elmlinger