Physiologic Consequences of Intracochlear Electrode Placement

Oliver F. Adunka, MD, FACS
Craig A. Buchman, MD, FACS
Douglas C. Fitzpatrick, PhD
Disclosures

• Advisory Board
 » MED-EL North America
 » Advanced Bionics Corporation

• Research Support
 » MED-EL North America
 » Cochlear Americas
 » Advanced Bionics Corporation
Background

- Why CIs destroy hearing?
- Intracochlear electrode insertion
 ...trauma to delicate membranes
Recent Efforts

- Surgical access
- Non-traumatic electrodes
- Insertion methods
 limited insertion depths
Role of Insertion Depth

• The **deeper** the insertion
 » ...the greater the **trauma**
 » ...thus, the **less likely to preserve hearing**
 » ...the **better** the CI
 at least coverage of one turn
Current Clinical Practice

- **Full** insertions w/o attempted HP
- **Limited** insertions w/ HP
 - 6 mm
 - 10 mm
 - 16 mm
 - 20 mm
 - > 20 mm

- Does **not account for**
 - Functional parameters
 - Cochlear **size variations**
Our Philosophy

• **Customized** electrode insertions

• **Fit** the insertion **to the patient**
 account for size, hearing, trauma, etc…

 » Long-enough electrode

 » **Record functional** parameters **DURING** insertion

• **Customize insertions** based on physiology

• Several **scenarios**

 » **Irreversible** trauma – full insertion

 » **Imminent** trauma – retract, modify parameters

 » Presence of **hair cells** – overlap? Stop insertion?
Why Not?

- Devices have **ability to record**
 NRT, NRI, ART (**electrical** stimulus)

- Can be **active during insertion process**
 Hook-up receiver/stimulator intraoperatively

- **Acoustically evoked** parameters
 might demonstrate
 - Intracochlear (imminent) **damage**
 - Relation of **electrode** tip to functional or dead
 regions in the cochlea
Setup via EP Device & Implant

Data Analysis
- Raw
- CM
- CAP

Processor

Acoustic Stimulator

Implant electrode

Coupled via RF link

Trigger
Setup via EP Device & Implant

Data Analysis

- Raw
- CM
- CAP

Processor

Acoustic Stimulator

Implant electrode

Coupled via RF link

Trigger
Setup via EP Device & Implant

Data Analysis
- Raw
- CM
- CAP

Processor

Acoustic Stimulator

Implant electrode

Coupled via RF link
Setup via EP Device & Implant

Data Analysis
- Raw
- CM
- CAP

Processor

Acoustic Stimulator

Implant electrode

Coupled via RF link

Trigger
Setup via EP Device & Implant

Data Analysis
- Raw
- CM
- CAP

Processor

Acoustic Stimulator

Implant electrode

Trigger
Coupled via RF link
Setup via EP Device & Implant

Data Analysis

- Raw
- CM
- CAP

Processor

Acoustic Stimulator

Implant electrode

Coupled via RF link

Trigger
Project Plan

- **Feasibility** of recordings
 Acoustically evoked potentials recorded via intracochlear electrode
 - **Animals**
 normal hearing and w/ NIHL efficiency (real time)
 - **Humans**
 various levels of HL

- **Interpretation** of parameters
 various levels of HL, rigid and flexible electrodes
different stages, different recording set-ups

- Feasibility of **using the implant**
Early Auditory Potentials

• **Stimulus**
 Clicks or tone bursts @ 1, 2, 4, 8, etc…

• **Measuring gross cochlear response**
 Filtering CAP & CM

 • CM: Cochlear Microphonic
 outer hair cells, follows stimulus polarity

 • SP: Summating Potential
 inner hair cells, follows envelope of tone burst stimulus

 • ANN: Auditory Nerve Neurophonic
 nerve fibers, fine structure *phase-locked* AP from nerve to LF

 • CAP: Compound Action Potential
 nerve fibers, onset activation of spiral ganglion cells
Endoscope & Electrode
Recording Abbreviation
Longitudinal Penetrations
Summary – Animal Studies

- **Feasibility**
 using acoustically evoked CM, CAP, ANN, SP

- **Abbreviate** protocol
 accomplish real-time feedback

- **Detect subtle** changes
 imminent trauma

- **Estimate proximity** to basilar membrane
 absent in areas w/o hair cells

- **Feasible in hearing loss** setting
 even in severe-to-profound scenario

- **Detect tonotopicity**
Human Studies
Recording Setup

[Image: Diagram showing recording setup with labels for Pinna, Sound Tube, Recording Electrode, Round Window Niche, and Facial Recess.]
RW ECoG

A

500 Hz
90 dB nHL
107 dB SPL

Response (µV)

Time (ms)

B

250 Hz
102 dB SPL

Response (µV)

Frequency (Hz)

C

1000 Hz
97 dB SPL

Response (µV)

Time (ms)

Frequency (Hz)
RW Response Distribution

Children
N=52

Adults
N=32
Intracochlear Recordings
Insertion Tracks

Response (dB re 1 μV) vs. Depth Inserted (mm)

- Extracochlear (RW)
- Intracochlear
- Return
Insertion Tracks

![Graph showing depth inserted vs response in dB re 1 μV]
Summary

• Feasibility
 …using acoustically evoked potentials in the OR

• Potentials remain strong
 even in the setting of flat ABR/profound SNHL

• Intracochal ear recording location possible
 even larger potentials!

• Good correlation w/ adult performance
 …so far even w/o further signal analysis
 • More adult data
 • Pediatric data

• Weak correlation w/ audiogram
 hearing testing does not predict implant performance
To Do

• Data on **intrascalar** recording locations
• More data on **longitudinal** penetrations mainly in human setting
 • Detect **active regions** in NIHL
 customize insertion depths
 • **Trauma patterns** w/ flexible electrode
 elevation of basilar membrane
• Adapt implant **software and setup** using acoustically evoked CM & CAP
• Learn more about **CI performance**
• Learn more about **phase**
 location within scala tympani, etc…
Contributors

- **Douglas C. Fitzpatrick, PhD**
- Craig A. Buchman, MD
- Harold C. Pillsbury, MD
- Charles Finley, PhD
- Emily Buss, PhD
- Steve Pulver, BS
- Margaret T. Dillon, AuD

...entire Auditory Neuroscience Group

- Stefan Mlot, MD
- Joshua B. Surowitz, MD
- Adam P. Campbell, MD
- Thomas A. Suberman, MD
- Joseph P. Roche, MD
- Baishakhi Choudhury, MD
- Jacob Wang, BS
- Christine Demason, BS
- Faisal Y. Ahmad, BS
- Omar Awan, BS
- J. Maxwell Pike, BS
- Mathieu Forgues, BS
- Claire Iseli, MBBS, MS, FRACS
- Nathan Calloway, MD
- William Merwin, BS
- Chris Giardina, BS
- Eric Formeister, BS
- Joe Mcclellan, BS

...and students during summer rotations
Oliver F. Adunka, MD, FACS
Associate Professor
Otology, Neurotology, Skull Base Surgery
Otolaryngology/Head & Neck Surgery

Office: (919) 966-3342
Pager: (919) 216-5886
eMail: ofa@med.unc.edu