Characterization of PEGylated Erythropoietin by CZE (UV/MS)
Dr. A. Rafai and PD Dr. M. A. Schwarz

Amazing where you can go

CEPharm 2015, New York
Characterization of PEGylated proteins

Purpose
- Characterization/identification in general
- Quantification of PEGylation degree
- Localisation of PEGylation site (random PEGylation)
- Analysis of charge variants (e.g. deamidation)
- Final: test method suitable for routine analysis

Challenge
- Characterization of PEGylated proteins is demanding by standard methods as the polydispersity and impurities from PEGs complicate matters
- PEGylation imparts charge and size heterogeneity, especially if a 30 kDa PEG is attached to a few potential PEGylation sites
- In EPO complexity is additionally increased by glycosylation

Approach:
- Reducing complexity of PEG-Erythropoietin by
 1. desialylation or deglycosylation
 2. followed by Lys-C digest and
 3. CZE-UV peptide mapping (identification: CZE-MS)
Analytical tools for the characterization of PEGylated proteins

<table>
<thead>
<tr>
<th>Method</th>
<th>Measurement/Property</th>
<th>Notes</th>
</tr>
</thead>
</table>
| HPLC/IEX/SEC* (MALLS) | hydrodynamic size 1-50 nm (molar mass, size kDa - MDa (10 - 500 nm)) | 1. Molecular weight distribution
2. Ratio of pegylated and non pegylated protein of the intact protein |
| CZE/CZE-SDS* | charge/hydrodynamic size hydrodynamic size kDa - MDa | 2. Pegylation site and individual degree of pegylation of digested protein |
| AF4 | hydrodynamic size 1 nm - few μm | |
| AUC | molecular weight and shape (0.1 nm - 0.1 μm) | |
| MALDI/HPLC-MS | absolute mass 1 - 400 kDa | |
| MALDI/HPLC-MS | ionization/hydrophobicity/absolute mass 1 - 1 000 000 m/z (TOF) | |
| CZE*- (MS) | charge/hydrodynamic size Da - MDa | |

* QC test method
The concept: CZE (Lys-C) peptide mapping of PEGylated protein

- disappearing/decreasing signals (in peptide map of pegP) indicates that the considered peptide is PEGylated completely/partially
- the number of new signals correlates with the number of PEGylation sites
Characteristics of EPO/pegEPO

Erythropoietin (EPO, beta)
- 165 amino acids
- 3 N-glycans (sialylated)
- 1 O-glycans (sialylated)
- 2 disulfide bridges (Cys 7-161, 29-33)

PEG-Erythropoietin (pegEPO, beta)
- approx. 1 PEG molecule attached
- 9 potential PEGylation sites (K)
- Preferred: K45 and K52

Molecular weight:
- EPO: approx. 30 kDa
- pegEPO: approx. 60 kDa (30 kDa polyethylene glycol)
Expected peptides resulting from Lys-C digest

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Mass [Da]</th>
<th>pI</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPRLICDSRVLERYLLEAK</td>
<td>2343</td>
<td>8.2</td>
</tr>
<tr>
<td>EAENITTGCAEHCSLNENITVPDTK</td>
<td>2690</td>
<td>4.3</td>
</tr>
<tr>
<td>VNHYAWK</td>
<td>927</td>
<td>8.6</td>
</tr>
<tr>
<td>RMEVGQQAVEVWQGLALLSEAVL</td>
<td>5025</td>
<td>4.9</td>
</tr>
<tr>
<td>AVSGLRLTLPPRALGAK</td>
<td>1955</td>
<td>12.0</td>
</tr>
<tr>
<td>EAISPPDAASAAPLRTITADTFRK</td>
<td>2499</td>
<td>6.2</td>
</tr>
<tr>
<td>LFRVYSNFLRGK</td>
<td>1499</td>
<td>11.0</td>
</tr>
<tr>
<td>LK</td>
<td>259</td>
<td>8.8</td>
</tr>
<tr>
<td>LYTGEACRTGD</td>
<td>1185</td>
<td>4.4</td>
</tr>
</tbody>
</table>

- **Peptides including glycans**
- **Most probable pegylation site**
Expected peptides resulting from Lys-C digest

Reduced complexity

Reduced charge heterogeneity

Reduced size heterogeneity
CZE and GCE of intact protein conjugate

Charge/size variants
CZE, EACA, pH=4.5

Charge/size variants
CZE, AcA, pH=2.5

Charge variants

- Size and charge variants of the glycans
- Size variants PEG
- Charge variants of the protein backbone

Size variants

SDS-GCE

EPO

pegEPO

ca. 40 kDa

7 min
CZE peptide map (Lys-C)
EPO/PEGylatedEPO

1. Changed A%?
2. New signals?
3. Stable digestion
4. Internal reference
5. Identification
6. Further reduction of complexity

glycosylated, non-glycosylated
CZE peptide map (Lys-C) of EPO
desialylated (ds), deglycosylated (dg)

glycosylated, desialylated, deglycosylated
CZE peptide map (Lys-C) of pegEPO
desialylated (ds), deglycosylated (dg)

\[\frac{q_1}{r h_1} \gg \frac{q_2}{r h_2} \]

pegEPO (ds)
pegEPO (dg)
PEGp1?
PEGp3/4?
PEGp2/3?

glycosylated, desialylated, deglycosylated, PEGylated
CZE peptide map (Lys-C)

Analytical result

Reduction of signal, RF ($A\%_{depeg}, MW$)

- $p_1: 0.4$ (11%, 2340)
- $p_2: 0.3$ (8%, 2690)
- $p_3: 0.2$ (13%, 900)
- $p_4: 0.4$ (32%, 5000)

$$\sum_{n=1}^{x} (A\%_{depeg}RF) = \sum_{n=1}^{x} (A\%_{peg})$$

EPO(dg)

PEGp1?

PEGp2/3?

PEGp3/4

pegEPO(dg)

E.g. a signal of 15% and a PEGylation probability of 10% leads to a reduction of 10%
Conclusion

- The separation of both pegylated and non-pegylated peptides can be achieved within one CE run ranging from **500 to 32'000 Da**
- 3 (main) pegylated peptides have been found directly (does not correspond to the number of pegylation sites)
- It is unclear if Lys-C is **sterically hindered** due to pegylation, pegylated single and twin peptides can be expected
- So far, the **determination of pegylation site and individual pegylation degree** can only be determined imprecisely; reasons are very slight changes in the profile of non pegylated peptides and low pegylation degree in the presence of 4-5 potential pegylation sites
- The **identification of pegylated peptides** is indispensable for the calculation of a precise pegylation degree of the individual pegylation sites
- The A% analysis of pegylated peptides (sum or individual) allows a **quick estimation of the overall pegylation state** (correlates to the pegylation degree), possibly suitable as a QC test method
- **Rough characterization of glycans** in terms of number of sialic acids and antennary is feasible
- **Further investigation** will be needed in order to precise the individual pegylation sites/degree
Thank you for your interest and attention!

Solvias (financial support)

CE group of Solvias
 Dr. Angelina Rafai
 Eva Maria Henne
 Thomas Kauf
 Alena Ferenc (doctoral research study)
 Dora Bolyan
 Nadia Howald

University Aalen (CE-MS measurements)
 Prof. Dr. Christian Neusüss