High Dose Delivery of Biologics
Development of Hyaluronidase Co-Formulations

Heiko Nalenz,
F. Hoffmann-La Roche Ltd., Basel, Switzerland

CaSSS CMC Strategy Forum «Drug Product for Biological Medicines: Novel Delivery Devices, Challenging Formulations and Combination»
Presentation Outline

• Drivers for high dose formulations
• Introducing hyaluronidase as permeation enhancer
• Formulation development challenges
• Manufacturing process considerations
• Delivery device
Drivers for High Dose Formulations

- Requirement of high dosing for antibody drugs
- Intravenous (IV) infusion as typical administration route
- Subcutaneous (SC) injection as alternative administration route limited by volume (typically 1-2mL)
Drivers for High Dose Formulations

Advantage of Subcutaneous Administration

- Reduction of administration time and medical resource utilization benefits both HCPs, patients and the overall health care system
- Greater convenience for patients
- Self (home) administration:
 - SC complies with auto-injection devices
 - Beneficial for long-term/chronic therapies
 - Further cost reduction for health care systems
Drivers for High Dose Formulations

How to Overcome SC Volume Limitation?

- Approaches to delivering high antibody (mAb) doses subcutaneously
 - Increase mAb concentration
 - High-conc. liquids
 - Suspensions
 - Increase the dosing volume
 - Increase interstitial space by using hyaluronidase

Enhanze™ Technology is Halozyme’s platform for facilitating delivery of drugs using recombinant human hyaluronidase enzyme - rHuPH20
Introducing rHuPH20 as Permeation Enhancer

Hyaluronic acid (HA)
- large, repeating sugar polymer found in interstitial tissue
- forms a barrier to movement of molecules in the interstitial space

- Interstitial matrix limits SC injection
- Hyaluronidase is a naturally occurring enzyme that breaks down HA into tetrasaccharides
 - Permanent process (turn over > 5g/day in human)
- Co-administration with rHuPH20
 - Enables large volume SC administration of mAbs
 - Increases overall bioavailability (shortening Tmax, increasing Cmax)

Formulation Challenges

One Formulation Containing mAb and rHuPH20

• Development of a stable liquid high-concentration formulation of mAb

• mAb co-formulation with rHuPH20: keep two very different proteins in a stable and active state within one formulation (mAb in large excess, approx. 5000/1 on a weight basis)

• Avoid and demonstrate absence of detrimental interactions between mAb and rHuPH20

• Demonstrate homogeneity during compounding

• Test potential sensitivity of all formulation components, incl. rHuPH20, towards residual hydrogen peroxide (isolator filling technology)
Formulation Challenges

Approach for mAb – rHuPH20 Co-Formulation Development

- Scouting Study
 - pH/buffer screen
 - Surfactant screen
 - DoE (Design of Experiments)

- Stability Study with selected formulation candidates
Formulation Challenges

Analytics for Co-Formulation Development Studies

- Standard protein analytics
 - High and low molecular weight species (aggregates and fragments) by size-exclusion chromatography and SDS-PAGE
 - Charge heterogeneity by ion-exchange chromatography
 - Visible and subvisible particles
 - pH, osmolality, turbidity, color

- rHuPH20 analytics
 - rHuPH20 activity

- Characterization of high-conc. formulations
 - Viscosimetry
Formulation Challenges

Viscosity

- Viscosity influences
 - Syringeability
 - Functionality of auto injectors
 - Processing (e.g. homogenization, filtration, filling...)

Viscosity behavior of mAb

IgG1 at 150 mg/mL

- Most mAb formulations show pseudo-Newtonian fluid behavior
- Viscosity is a function of mAb concentration and excipients
- Viscosity needs attention during formulation development
Formulation challenges

Viscosity Assessment of mAb & rHuPh20 Co-Formulations

Rheogram of three mAb-rHuPH20 co-formulations at different temperatures

Viscosity (20°C, 2000s⁻¹) of mAb-rHuPH20 co-formulations (pH 5.5)

- The viscosity of all formulations was in an acceptable range with regards to processing and administration
Formulation Challenges

Why Including Polysorbate 20?

- Co-formulation of mAb with rHuPH20
 - mAb in large excess (weight ratio mAb/rHuPH20 approx. 1000 /1)

- Surfactant prevents mAb aggregation, concomitant with stabilization of rHuPH20 activity in the co-formulation

- Polysorbate 20 is more effective at lower concentrations than polysorbate 80
Formulation Challenges

Why Including Methionine and Trehalose?

- Methionine has a beneficial effect on mAb stability (e.g. levels of soluble aggregates) as well as on rHuPH20 stability (rHuPH20 activity, data not shown)
Formulation Challenges

Is there Interference between mAb and rHuPH20?

- Does rHuPH20 impact the glycosylation of the mAb?
 - Compare glycan distribution of the mAb in presence and absence of rHuPH20
 - Determine glycan distribution in presence of rHuPH20 over long term storage

- Side-by-side studies comparing mAb stability in the DP formulation with and without rHuPH20
 - Tested with routine and extended analytical methods
 - mAb stability also under stress conditions (temperature stress 30°C and initial light stress)
Formulation Challenges

rHuPH20 Does not Impact mAb Glycan Structure

- Relative glycan distribution was determined using CE with coupled fluorescence detection after enzymatic release of N-linked oligosaccharides

- No difference in the glycan structure abundance (%CPA) of drug substance (without rHuPH20) and of corresponding drug product (with rHuPH20)

- No significant change after storage of drug product at 2-8° C for up to 24 months
The mAb Stability is not Impacted by the Addition of rHuPH20

• The side-by-side comparison confirms that there is no significant change in the degradation profile of the mAb upon presence of rHuPH20
Formulation challenges

No Direct Interaction between rHuPH20 and mAb was Observed

- A Western Blot procedure in which rHuPH20 is detected was used to investigate potential formation of heteroaggregates.

- No additional bands detected during stability study for up to 24 months (2-8°C).
 - No aggregation products of rHuPH20 can be observed at the recommended storage condition.
Process Related Formulation Challenges

Compounding Operation

- Compounding process
 - rHuPH20 stock solution is added to the formulated mAb bulk
 - Challenge: the volume of rHuPH20 solution is comparatively low
 - Ratio 500/1 on a volume basis
 - Ratio 5000/1 on a protein weight basis

- Homogenization process was established using:
 - A formulated bulk surrogate solution having the same viscosity as the original mAb formulation
 - A marker simulating the rHuPH20 stock solution in a comparable small quantity
Process Related Formulation Challenges

Compounding Operation

- Samples were taken at different positions in the vessel and at different times after starting the homogenization procedure
- Samples were analyzed for marker content
- Criteria for assessment: relative content based on dilution (assuming homogeneity) and relative standard deviation

Marker (rHuPH20 surrogate)

T, M, B: sample locations

![Graph showing relative content over stirring time]
Process Related Formulation Challenges

Is there an Effect of Hydrogen Peroxide Residuals?

- Isolator technology is used for filling of vials
- Decontamination by means of vaporized hydrogen peroxide (VHP)
- Low levels of residual hydrogen peroxide may remain after aeration.
- It is known that residual amounts of hydrogen peroxide that are delivered into the filled drug product solution can impact the quality of the drug product
Process Related Formulation Challenges

Is there an Effect of Hydrogen Peroxide Residuals?

- The final drug product solution was spiked with different amounts of H$_2$O$_2$ stock solution -> subsequent stability testing
 - Appropriate oxidation assays (Pep-Map, RP-HPLC) were applied to test antibody and rHuPH20 sensitivity towards oxidation (in addition to standard stability indicating assays)
 - Peroxide content was determined

![Peroxide assay graph](image)

Peroxide content drops quickly in the formulation -> likely due to immediate reaction with formulation ingredients
Process Related Formulation Challenges

Hydrogen Peroxide Residuals Did not Impact the Stability of rHuPH20 or mAb

- No oxidation of antibody and rHuPH20 seen in presence of H_2O_2, even at concentrations largely exceeding the target level of VHP in the isolator

- No effect of H_2O_2 on other stability-indicating assays (data not shown)
Outlook: Single Use Injection Device

- Single use injection device for controlled sc administration of the co-formulation

- Additional investigations are required (such as compatibility of co-formulation with container, interaction with silicone...)
Summary

- SC administration motivated the development of a highly-concentrated mAb formulation containing rHuPH20

- A robust, liquid co-formulation showing acceptable stability behaviour with respect to both proteins was developed

- The presence of rHuPH20 in the formulation has no impact on the quality, stability and degradation pathway of the mAb

- Specific properties of the co-formulation necessitate attention at each drug product development stage
 - Special care was taken to address potential issues regarding the compounding step (very high mAb/rHuPH20 ratio) and regarding sensitivity of the co-formulation towards decontaminating agents
Acknowledgements

F. Hoffmann-La Roche Ltd, Basel

Pharmaceutical Development
Hanns-Christian Mahler
Michael Adler
Ulla Grauschopf
Stefan Fischer
All colleagues from Late Stage Formulation & Process development...

Device Development
Mark Chipperfield
Jörg Sielemann
Marcel Both

Analytical Development
Elke Dietel
Stephen Hyland
Alexandre Briguet
Thomas Buckel

Project Management
Christine Kionka
Isabelle Bauer-Dauphin
All members of the technical development team...

Halozyme Therapeutics
Mike LaBarre
Charles Lollo
All collaborators...
We Innovate Healthcare