CD4+ T Helper T Cells....
and their cytokines in immune defense and disease

Andrew Lichtman M.D., Ph.D.
Brigham and Women’s Hospital
Harvard Medical School

Types of T Cell–Mediated Immune Reactions

CD4+ helper T cells (Th)
- Microbes that live inside phagocytes
- Microbes that are readily killed by phagocytes

CD8+ Cytotoxic T lymphocytes (CTL)
- Microbes that live inside tissue cells

Phagocytes with ingested microbes in vesicles
CD4+ effector T cells
(Th1 cells)

CD4+ effector T cells
(Th17 cells)

Cytokine secretion

Macrophage activation
killing of ingested microbes

Infected cell with microbes or antigens in cytoplasm
CD8+ T cells
(CTLs)

Killing of infected cell

Inflammation, killing of microbes
Sequence of events in T cell responses

Antigen recognition
- Naive CD4+ T cell
- Naive CD8+ T cell
- Costim
- Antigen
- APC

Lymphocyte activation
- IL-2R
- Cytokines (e.g., IL-2)
- Naive CD4+ T cell
- Naive CD8+ T cell

Proliferation
- Effector CD4+ T cell
- Effector CD8+ T cell (CTL)

Differentiation
- Killing of infected cells; macrophage activation
- Activation of macrophages, B cells, other cells; inflammation

Effector functions
- Memory CD4+ T cell
- Memory CD8+ T cell

Chemokine and S1P receptor expression
- CXCR3
- S1PR1
- CCR7

Lymphoid organ

Peripheral tissue

Induction of CD4+ Helper T Cell Response

Antigen recognition
- Antigen recognition in lymphoid organs

Induction of response
- B7, CD28
- CD4+ effector T cells

T cell expansion and differentiation
- Changes in chemokine- and S1P-receptor expression
- Naive T cell

Differentiated effector T cells enter circulation
- Naive CD4+ T cells
- CD4+ effector T cells
Effector Phase of CD4+ T Cell Responses

Migration of effector T cells and other leukocytes to site of antigen

Effector functions of T cells
- Phagocytosis and killing of microbes
- Inflammation, leukocyte activation

Cytokine-Mediated Functions of CD4+ Helper T Cells

Activate B cells to produce antibodies which eliminate extracellular microbes

Promote differentiation of CTL which which kill infected cells

All this done by one cell type? or Are there subsets of helper T cells with different functions?

Activate macrophages to kill phagocytosed microbes or repair tissues

Promote migration and activation of inflammatory cells

B lymphocyte

Cytotoxic T lymphocyte

Helper T lymphocyte

Macrophage

Granulocyte

Eosinophil

Monocyte/macrophage

Secreted antibody
CD4+ Helper T cell subsets: definitions and properties

- Populations of CD4+ T cells that make restricted and non-overlapping sets of cytokines
 - Early after activation, T cells can produce multiple cytokines
 - Progressive activation leads to "polarization": production of selected cytokines

- Distinct functions, migration properties, roles in disease

Major Subsets of CD4+ Helper T Cells

<table>
<thead>
<tr>
<th>Effector T cells</th>
<th>Defining cytokines</th>
<th>Principal target cells</th>
<th>Major immune reactions</th>
<th>Host defense</th>
<th>Role in disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th1</td>
<td>IFN-γ</td>
<td>Macrophages</td>
<td>Macrophage activation</td>
<td>Intracellular pathogens</td>
<td>Autoimmunity; chronic inflammation</td>
</tr>
<tr>
<td>Th2</td>
<td>IL-4, IL-5, IL-13</td>
<td>Eosinophils</td>
<td>Eosinophil and mast cell activation; alternative macrophage activation</td>
<td>Helminths</td>
<td>Allergy</td>
</tr>
<tr>
<td>Th17</td>
<td>IL-17, IL-22</td>
<td>Neutrophils</td>
<td>Neutrophil recruitment and activation</td>
<td>Extracellular bacteria and fungi</td>
<td>Autoimmunity; inflammation</td>
</tr>
</tbody>
</table>
Differentiation of Th Subsets

- Different subsets develop from uncommitted naïve CD4+ T cells
- Each subset is induced by the types of microbes that subset is best able to combat
- Cytokines produced at the site of antigen recognition drive differentiation into one or the other subset
- Major sources of cytokines that drive differentiation: APCs, responding T cells themselves, other host cells

Differentiation of Th subsets

INDUCTION
- Cytokines act on antigen-stimulated T cells to induce the transcription of cytokine genes that are characteristic of each subset

COMMITMENT
- Epigenetic changes maintain subset cytokine genes in active state, and the T cell becomes committed to one specific pathway.

AMPLIFICATION
- Cytokines produced by any given subset promote the development of that subset and inhibit differentiation toward other CD4+ subpopulations.
Development of T_H1 Cells

EFFECTOR FUNCTIONS:
Macrophage activation

JAK-STAT CYTOKINE SIGNALING

JAKS
Jak1, Jak2, Jak3, Tyk2

STATS
STAT1, STAT2, STAT3, STAT4, STAT5 (A and B), STAT6

Diagram showing the interaction between JAKs and STATs in cytokine signaling.
The canonical Jak–STAT pathway

Development of Th2 Cells

Effectors Functions:
- Alternative macrophage activation
- Mucus production
- Increased gut motility
- Eosinophil activation
Development of Th17 Cells

STAT3-dependent cytokines in Th17 differentiation

Th differentiation:
Summary of Cytokines and Transcription Factors Involved

- **Naïve CD4+ T cell**
 - IL-4
 - IL-12

- **TH1**
 - IFN-γ
 - IL-12
 - STAT 1, STAT 4

- **TH2**
 - IL-4
 - IL-5
 - IL-13
 - STAT 6

- **TH17**
 - IL-17
 - IL-21
 - IL-22
 - STAT 3

Th subsets express distinct sets of chemokine receptors which dictate specific recruitment patterns

- **CXCR3**
 - CXCL 9, 10, 11
- **CCR5**
 - CCL 3, 4, 5
- **CCR4**
 - CCL 22, 17
- **CCR8**
 - CCL 1
- **CCR6**
 - CCL 2, 4, 5, 17, 22

Adapted from: F Annunziato, C Romagnani, and S Romagnani J Allergy Clin Immunol 2015;135:626-35
The Functions of Th1 Cells

Macrophage Activation by TH1 Cells (1)
What is the function of human T_H1 cells?

required for defense against intracellular microbes

- **Mendelian susceptibility to mycobacterial disease (MSMD):** inborn errors of IFN-γ-mediated immunity.
- Genes involved: $[\text{IL}-12\beta1, \text{IFN}-\gamma R1, \text{IL}-12p40, \text{IFN}-\gamma R2, \text{STAT}-1]$
- Most common infections with deficiencies in IFN-$\gamma R1$, IFN-$\gamma R2$: *Mycobacteria, Salmonella*
- Most common infections with deficiencies in IL-12β1, IL-12p40: *Mycobacteria, Salmonella, Candida*

IL-12 required for Th1 differentiation

IFNγ required for Th1 differentiation and function (mac activation)

STAT-1 required for IFN-γR signaling

Functions of T_H2 Cells

[Diagram showing pathways involving T_H2 cells and their functions: antibody production, mast cell degranulation, intestinal mucus secretion and peristalsis, eosinophil activation, and alternative macrophage activation (tissue repair)]
Macrophage Activation: Classical & Alternative

Classically activated macrophage (M1):
- Microbial TLR-ligands
- IFN-γ
- ROS, NO, lysosomal enzymes
- Inflammation
- Microbicidal actions; phagocytosis and killing of many bacteria and fungi
- Tumor killing

Alternatively activated macrophage (M2):
- IL-13, IL-4
- IL-10, TGF-β
- Anti-inflammatory effects
- Tissue repair

Functions of $T_{H}17$ cells

- APC
- Naive CD4+ T cell
- Proliferation and differentiation
- $T_{H}17$ cells

- Chemokines, TNF, IL-1, IL-6, CSFs
- Anti-microbial peptides
- Inflammation, neutrophil response
- Epithelial repair

- Bacteria
- Leukocytes and tissue cells
What is the function of human TH17 cells?
...required for defense against extracellular microbes

- Human Stat3 mutations result in HIES*, which includes infection susceptibility, as well as many other clinical manifestations.
 - recurrent staphylococcal abscesses or candidiasis
- HIES patients have impaired TH17 responses.
- Supports role for TH17 cells in resistance to extracellular bacterial and fungal infections

*Hyper-IgE Syndrome, aka Job’s syndrome

What is the function of human TH17 cells?
...required for defense against extracellular microbes

- Autoimmune polyendocrinopathy with candidiasis and ectodermal dystrophy (APECED)* syndrome is a rare autoimmune disease associated with severe chronic mucocutaneous candidiasis (CMC)
- Anti-IL-17A, IL-17F, and IL-22 autoantibodies found in up to 90% of cases, strongly associated with CMC

* a.k.a Autoimmune polyendocrine syndrome type 1 (APS-1); due to AIRE (Auto immune regulator) mutations
What are the functions of human Th1 vs. Th17 cells?

- Mendelian susceptibility to mycobacterial disease (MSMD): inborn errors of IFN-γ immunity.
- Some genes involved: IL-12Rβ1, IFN-γR1, IL-12p40, IFN-γR2, STAT-1, IRF8,
- Most common infections with deficiencies in IFN-γR and STAT1: BCG, environmental mycobacteria, M. tuberculosis, Salmonella
- Most common infections with deficiencies of IL-12p40, IL-12Rβ1: Mycobacteria, Salmonella, Candida

Why both intracellular and extracellular infections in IL-12p40 and IL-12Rβ1 deficiencies?

- p40 shared by IL-12 and IL-23
- IL-12Rβ1 shared by both IL-12R and IL-23R
 - IL-12 needed for Th1 differentiation
 - IL-23 needed for Th17 differentiation

Signaling pathways that regulate differentiation of human CD4+ T cells into effector subsets

Ma et al. JEM 2-17
Microbes Drive Differentiation of the T_H Subsets Needed for their Defense

- **Th1**
 - Intracellular microbes (mycobacteria)
 - NK cell
 - IL-12
 - IFN-γ
 - Th1 cell

- **Th2**
 - Helminths, mast cells, eosinophils
 - IL-4
 - GATA-3
 - Th2 cell

- **Th17**
 - Extracellular fungi, bacteria
 - IL-1, IL-6, IL-23, TGF-β
 - Th17 cell

Development of Memory T cells

- Thymic output
- Naive T cells
- Memory T cells

% Blood T cells vs Age (Years)

- Naive T cells
- Memory T cells
- Thymic output

- Naive T cell
- Effector T cells
- Memory T cells
- Apoptotic cells
- Uncommitted T helper subset phenotypes
Properties of Memory T cells

- Defining properties: survive in a quiescent state after antigen is eliminated and to mount larger and more rapid responses to antigens than do naive cells.
- Memory cells express increased levels of anti-apoptotic proteins, which may be responsible for their prolonged survival.
- The number of memory T cells specific for any antigen is greater than the number of naive cells specific for the same antigen.
- Memory cells undergo slow proliferation, and this ability to self-renew may contribute to the long life span of the memory pool.
- The maintenance of memory cells is dependent on cytokines but does not require antigen recognition.
- Memory cells are able to migrate to peripheral tissues and respond to antigens at these sites.
- Both CD4+ and CD8+ memory T cells are heterogeneous and can be subdivided into subsets based on their homing properties and functions: Central Memory (in SLOs) and Effector Memory (in mucosal tissues).
- Some memory T cells persist in peripheral tissues for very long periods (Tissue Resident Memory cells, TRM).

The real story is more complicated!

- Additional subsets related to classic subsets (Th9, Th22, Tfh).
- Other sources of the same helper cytokines besides CD4+ Th cells.
- CD4+ Th cells that blur Th 1, 2, 17 distinctions.
- Plasticity of Th subsets.
CD4+ Th subsets: Cellular targets
(Tfh is one more)

<table>
<thead>
<tr>
<th>Effector T cells</th>
<th>Defining cytokines</th>
<th>Principal target cells</th>
<th>Major immune reactions</th>
<th>Host defense</th>
<th>Role in disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th1</td>
<td>IFN-γ</td>
<td>Macrophages</td>
<td>Macrophage activation</td>
<td>Intracellular pathogens</td>
<td>Autoimmunity; chronic inflammation</td>
</tr>
<tr>
<td></td>
<td>IL-2, IL-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th2</td>
<td>IL-4, IL-6, IL-13</td>
<td>Eosinophils</td>
<td>Eosinophil and mast cell activation; alternative macrophage activation</td>
<td>Helminths</td>
<td>Allergy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th17</td>
<td>IL-17, IL-22</td>
<td>Neutrophils</td>
<td>Neutrophil recruitment and activation</td>
<td>Extracellular bacteria and fungi</td>
<td>Autoimmunity; inflammation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tfh</td>
<td>IL-21 (and IFN-γ or IL-4)</td>
<td>B cells</td>
<td>Antibody production</td>
<td>Extracellular pathogens</td>
<td>Autoimmunity (autoantibodies)</td>
</tr>
</tbody>
</table>

Global overview of T helper cell differentiation
Innate lymphoid cells (ILCs)

Cells that produce the same cytokines as subsets of helper T cells but do NOT express TCRs and do not recognize MHC-associated peptide antigens.

Non-Th17 Sources of IL-17 in Inflammatory Diseases

- γδ T cells: Psoriasis
- CD8+ T cells: Psoriasis
- Neutrophils: Arthritis, Dermatitis
- iNKT cells: Various
- ILCs: Inflammatory bowel disease

Anti-IL-17 therapy would theoretically apply to all of these
Th cells that make both IL-17 and IFN-γ are important in defense and disease

- Bi-allelic loss-of-function RORC (encode RORγt) mutations result in candidiasis and mycobacteriosis*

- Patients lack IL-17A/F-producing T cells (expected)…explains candidiasis

- Patients have impaired IFN-γ response to mycobacterium (unexpected)

 In these patients IFN-γ production is impaired in:
 - γδ T cells
 - Th1* (a.k.a "nonclassic Th17") subset:
 - αβ TCR, CD4+ T bet+ RORγt+ IFN-γ+, IL-17A+ CCR6+, CXCR3+

Type 1 vs. Type 3 immune defense is not simply attributable to distinct Type 1 vs. Type 3 cellular effectors

Dual IFNγ/IL-17 producing Th cells (Th1*) may be the major pathogenic effectors in many diseases

- Can be derived from already differentiated classic Th17 cells in response to IL-23

- More abundant than Th1 or Th17 at sites of inflammation in mouse model diseases (EAE) and human diseases (Crohn's, atherosclerosis)

* see: Burkett PR, Meyer zu Horste G, Kuchroo VK. J Clin Invest. 2015;125:2211-9
Factors that alter the intestinal microenvironment can affect Th17 differentiation into pathogenic Th1* cells

Signals and nuclear factors driving Th17 differentiation and pathogenicity
Plasticity of CD4+ T cell subsets

- Cytokine reporter mice show significant plasticity of fully differentiated Th cells.
 - e.g. Th 17 cell can be converted to Th1 cells by stimulation with IL-12 or IL-23, in the absence of TGFβ.
 - Treg can be converted to Th17 cells
- Histone modification studies that mark active/poised vs. silenced promoters of the lineage-determining transcription factors* (e.g. Tbet, GATA3, RORγT) show evidence for subset plasticity
- Much evidence of plasticity exists for human Th cells
- **Th17 cells are the most plastic**

*Trimethylation of lysine 4 on histone H3 (H3K4me3) is a permissive mark
 Trimethylation of lysine 27 on histone H3 (H3K27me3) is a mark of gene silencing.
Targeting Type Th1 (Type 1) /Th17 (Type 3) Responses

- IL-17A: Psoriasis, RA, Ankylosing spondylitis (Secukinumab)
 Type 3
- IL-17RA: Psoriasis, Psoriatic arthritis (Brodalumab)
 Type 3
- IL-23 and IL12 p40 Psoriasis, Psoriatic arthritis
 (Ustekinumab)
 Type 1 and 3
- IL-23p19 Psoriasis (Tildrakizumab Phase III)
 Type 3
- IL-6R inhibitors approved for RA are theoretical inhibitors of
 Th17 differentiation

Anti-Cytokine mAb Approved 2017

<table>
<thead>
<tr>
<th>Non-proprietary name</th>
<th>Target</th>
<th>Indication first approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brodalumab</td>
<td>IL-17RA</td>
<td>Plaque psoriasis</td>
</tr>
<tr>
<td>Dupilumab</td>
<td>IL-4Rα</td>
<td>Atopic dermatitis</td>
</tr>
<tr>
<td>Sarilumab</td>
<td>IL-6R</td>
<td>Rheumatoid arthritis</td>
</tr>
<tr>
<td>Guselkumab</td>
<td>IL-23 p19</td>
<td>Plaque psoriasis</td>
</tr>
<tr>
<td>Benralizumab</td>
<td>IL-5Rα</td>
<td>Asthma</td>
</tr>
</tbody>
</table>
Therapeutic targeting of theJak–STAT pathway

Approved Jak inhibitors (‘jakinibs’)

Tofacitinib, JAK1 and JAK3 inhibitor; approved for rheumatoid arthritis, in trials juvenile arthritis, psoriasis, alopecia areata, ankylosing spondylitis, lupus and ulcerative colitis14

Ruxolitinib, a JAK1 and JAK2 inhibitor approved for treatment of polycythemia vera and myelofibrosis

Oclacitinib, a JAK1 and JAK2 inhibitor, approved for dermatitis in dogs

Targets of drugs approved and in trials

References

