Classification of Data and Activities in Self-Quantification Systems

Manal Almalki
Dr. Guillermo Lopez-Campos
Dr. Kathleen Gray
Prof. Fernando Martin-Sanchez

Health and Biomedical Informatics Centre

4 April 2014
OUTLINE

• What is Self Quantification?
 Self Quantification is a source of ‘big data’.
 Classification of Self Quantification Systems.
 Classification of Data and Activities.
 Minimum Information about a Self-Monitoring Experiment (MISME).
• Importance of our study.
What is Self Quantification?
Self-quantification is about tracking health aspects from mental, emotional, physical, to social aspects, in relation to time, location, environmental factors, etc. All can be captured and translated into numbers.

‘Self-knowledge through numbers’.

Help self-trackers to better understand their health status and how to interact with the world around them.
Self Quantification is a source of ‘big data’
Widespread and rise of Quantified-Self community

Number explosion of mHealth apps and wearable technology

Number of QS Groups

iTunes Apple and Google Play

97,000+ mobile apps related to HEALTH & FITNESS
A self-tracker is tracking multiple health indicators.

Rising popularity of mHealth apps and wearable technology.

Image 1: Pew Internet survey showing:
- Of US adults, 69% track their health indicators.
- Of US adults living with one chronic condition, 40% track their health indicators.
- Of US adults living with two or more chronic conditions, 62% track their health indicators.

Image 2: Graph showing:
- 15M users in 2013
- 100M users in 2018

Source: Juniper Research, 2013
Self-trackers are more likely to share their collected row data with other people around the world

• 43% of trackers with 2+ conditions share their data, 71% share with a clinician (Pew, 2013).

• In our survey (2014): 74% of respondents share their data online, compared to 26% who don’t.
In our study:

- Tools and apps characteristics: Classification of self-quantification systems (SQS).
- Data and activities characteristics: classification of data and activities (CDA-SQS).
- How consumers are interacting with these systems to capture such data: proposal for a framework.
Classification of Self-Quantification Systems (SQS)

• Capture data directly from the user (Primary or Secondary)
• Sensor Location (Mobile or Fixed)
• Involve skin pricking (In-contact or On-body)
• Data type (Environmental or Touchless)
• Location of data integration (Software-based or Hardware-based integration)
• Location of data visualisation (Standalone, etc.)
Examples of primary systems

Actipressure

Zeo Sleep Manager

Mood Panda

23andMe

μBiome

Fitbit

Sensaris Senspod

iBGStar
Example of secondary systems

Image source: http://www.bodytrack.org/images/diagram.png
Classification of Data and Activities
Adapted from WHO-ICF (World Health Organization - International Classification of Functioning, Disability and Health)
<table>
<thead>
<tr>
<th>Body structures and functions</th>
<th>Body actions/activities</th>
<th>Around body</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mental functions</td>
<td>Learning and applying knowledge</td>
<td>Relationships and attitudes</td>
</tr>
<tr>
<td>Sensory functions</td>
<td>Communication</td>
<td>Products or substances for personal consumption</td>
</tr>
<tr>
<td>Sensation of pain</td>
<td>Mobility</td>
<td>Products and technology for use</td>
</tr>
<tr>
<td>Voice and speech functions</td>
<td>Self-care</td>
<td>Natural environment and human-made changes to environment</td>
</tr>
<tr>
<td>Cardiovascular system</td>
<td>Domestic life</td>
<td></td>
</tr>
<tr>
<td>Haematological system</td>
<td>Interpersonal interactions</td>
<td></td>
</tr>
<tr>
<td>Immunological system</td>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Respiratory system</td>
<td>Work and employment</td>
<td></td>
</tr>
<tr>
<td>Digestive system</td>
<td>Economic life</td>
<td></td>
</tr>
<tr>
<td>Metabolic system</td>
<td>Recreation and leisure</td>
<td></td>
</tr>
<tr>
<td>Endocrine system</td>
<td>Religion and spirituality</td>
<td></td>
</tr>
<tr>
<td>Genitourinary functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reproductive functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skeletal system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscular system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nails</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genome (DNA, RNA and genes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Categories in a mental function domain

<table>
<thead>
<tr>
<th>Domain</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- MENTAL FUNCTIONS</td>
<td>Appetite
Attention e.g. sustaining attention, shifting attention, dividing attention, sharing attention; concentration; distractibility
Calculation e.g. manipulation of mathematical symbols and processes
Consciousness
Emotions e.g. affect; sadness, happiness, love, fear, anger, hate, tension, anxiety, joy, sorrow; lability of emotion; flattening of affect
Intellectual growth, mental retardation, dementia
Memory e.g. remembering; recalling and learning, amnesia
Motivation
Perception e.g. recognising of auditory, visual, olfactory, gustatory, tactile and visuospatial perception, such as a hallucination or illusion
Psychomotor factors e.g. excitement and agitation, posturing, catatonia, negativism, ambitendency, echopraxia and echolalia
Psychosocial functions e.g. autism
Sleep
Temperament and personality e.g. extraversion, introversion, agreeableness, conscientiousness, psychic and emotional stability, and openness to experience; optimism; confidence; trustworthiness
Thought e.g. pressure of thought, flight of ideas, thought block, incoherence of thought, tangentiality, circumstantiality, delusions, obsessions and compulsions</td>
</tr>
<tr>
<td>2- SENSORY FUNCTIONS</td>
<td>Senses e.g. seeing, hearing, tasting, smelling, touch</td>
</tr>
</tbody>
</table>
Minimum Information about a Self-Monitoring Experiment (MISME)

Image source: http://biosharing.org
MISME

{1} Study Question/Experiment Hypothesis

Sample
Who? Which part? Where? When?
(e.g., time, location, etc.)

Assay
(sample, device)

Device
Technical Specs

What measurements?
(CDA-SQS) Model

SFS Taxonomy

{2} Study

{3} Data

Investigation
Importance of our study

• It introduces the self quantification practice as a ‘big data’ source for the consumer health informatics research.

• It provides tools and knowledge that a researcher need to be aware of or learn in order to be competent with self quantification research: SQS classification, CDA-SQS, MISME, etc.

• It aims to facilitate a new potential methodology in the self quantification and consumer health research.

• It is the first research of its type in the field of self quantification and consumer health research.
Key References

Thank You For Listening

For more information
Email: malmalki@student.unimelb.edu.au
http://medicine.unimelb.edu.au/hbic
http://www.scoop.it/t/selfomics
http://hbiru.wordpress.com/