Gale Associates, Inc.
Engineers and Planners

Waterproofing Below Grade in High Water Table Conditions

ICRI 2013 Spring Convention

James E. Saizan, AIA and Marc A. Loranger, P.E.
March 20, 2013
Presentation Outline

- Type of Structures and Specific Concerns
- Approaches to Sub-grade Waterproofing
- Design and Product Considerations
- Case Study Examples
Sub-grade Structures and Concerns

- Hydrostatic pressure – weight of water
- Storm water
- Capillary action
Sub-Grade Structures and Concerns

- Foundation walls and footings
- Slabs on grade / split / mud
- Sump / elevator pits
- Pile and matt slab foundations
- Retaining walls
- Tunnels
- Parking garages / slurry walls
- Occupied below grade spaces
Key Concepts

- Code requirements
- Tolerance to moisture
- Risk of leakage
- Redundancy in system
Approach to Sub-Grade Waterproofing

Control of Ground and Storm Water

- Footing drains
- Under slab drains
- Dewatering during excavation
- Pumps and wells
- Back up power for pumps
APPLY FULL EVEN COAT OF CRYSTALLINE WATERPROOFING CONCENTRATE SLURRY TO ENTIRE INTERIOR SURFACES (2 COATS).

IN FORMED 1" X 1" RECESS STRIP, APPLY 1 SLURRY COAT OF CRYSTALLINE WATERPROOFING CONCENTRATE, THEN FILL SLOT WITH CRYSTALLINE WATERPROOFING DRY-PAC CONCENTRATE.

CONTINUOUS HYDROPHILIC WATERSTOP CENTERED IN KEYWAY OF CONSTRUCTION JOINT (TYPICAL).

BETWEEN POURS, APPLY CRYSTALLINE WATERPROOFING CONCENTRATE SLURRY TO ALL JOINT SURFACES AT THE RATE OF 2.0 LB/SQ YD., (TYPICAL).

NEGATIVE SIDE

CONTINUOUS PRIMER.
RUBBERIZED ASPHALT SHEET MEMBRANE.
DRAINAGE COMPOSITE.
2" THICK EXTRUDED POLYSTYRENE.
DRAINAGE COIL OR DUAL LAYER OF COMPOSITE.
FILTER FABRIC.

CONCRETE WALL.
HYDROPHILIC WATERSTOP W/ 4" ± EDGE DISTANCE.

CONCRETE FOOTING.

FOUNDATION PERIMETER DRAIN.
RUBBERIZED ASPHALT SHEET MEMBRANE FLASH PIECE, EXTENDED 6" ON VERTICAL FACES.

POSITIVE SIDE

3/4" (MIN.) FILLET (CONTINUOUS) OF LIQUID MEMBRANE.

BLINDSIDE WATERPROOFING MEMBRANE; EXTEND FULL HEIGHT @ VERTICAL FACE OF FOOTING.

LIQUID MEMBRANE CANT TERMINATION (CONTINUOUS @ END OF RUBBERIZED ASPHALT SHEET MEMBRANE. MEMBRANE TO EXTEND 8" DOWN FACE OF FOOTING.

POSITIVE AND NEGATIVE SIDE WATERPROOFING
Approach to Sub-Grade Waterproofing

Positive Side

- Bentonite clay
- Composite polymers
- Reinforced fluid
- Sheet membrane
- Cementitious
- Soil injection
Approach to Sub-Grade Waterproofing

Blindside (positive side)

- Slabs
- Waste forms (walls and footings)
- Soldier pile and lagging / tie-backs
- Property line construction
- Shotcrete
Approach to Sub-Grade Waterproofing

Negative Side

- Crystalline
- Metallic oxide
- Cementitious
- Injection
Approach to Sub-Grade Waterproofing

Integral Concrete Waterproofing

- Secondary / tertiary redundancy
- Primary waterproofing for duct banks
- Dams, waterways, containment tanks
- .002” crack bridging capability
Joint Water Stops

- Hydrophilic
- Bulb
- Consider joint movement
- Retrofit applications
- New to existing building transitions

Approach to Sub-Grade Waterproofing
Design Considerations

Code Requirements

- MA Building Code (5th edition): 1224.4; Groundwater Investigation
- 2010 Florida Building Code
- IBC/CT Building Code – not less than 12” above the maximum elevation of the groundwater table
- Dampproofing vs. waterproofing
- Occupied spaces
Design Considerations

Geotechnical Data

- Design groundwater elevation – seasonal highs and lows
- Backfill type and acceptability
- Soil backfill requirements
- Controlled compaction requirements
- Damage control
Design Considerations

Soil / Water Contamination and Testing

- Saltwater
- Brackish water / sulfates
- Petroleum
- Other chemicals (dry cleaning PCE, high alkaline, hard and soft water)
- PH testing
Design Considerations

Structural Configuration and Behavior

- Active
- Passive
- System transitions
Design Considerations

Environmental Conditions

- Minimum application temperatures
- Freezing temperature; surface and ambient
- Precipitation
- Dust control
Surface Preparation

- Concrete (honeycombing, form oils, form ties and tie wires, curing compounds, finish considerations, cold joints)
- Soil / fills (compaction, correct aggregate size, free draining, no clay in sub-base)
- Forms (soldier pile and lagging, sheet piling joints, tie-backs)
- Priming requirements
Design Considerations

Construction Sequence

- Pits prior to slabs
- Footings / mats prior to walls
- Membrane laps and transitions
- Open time and exposure subject to damage
Design Considerations

Remedial Techniques

- Drill and pressure injection (high pressure)
- Exterior soil injection / curtain walling (low pressure)
- Negative side cementitious and crystalline
- Water plugs / patches
- Positive side (Extensive)
Case Study Example – Florida Courthouse Basement

- Leak sources: slab penetrations and wall/floor joints
- Buoyant pressures caused heaving and buckling during storm related rising water tables
- Existing system: composite HDPE/Bentonite on positive/blind side, well point system
Case Study Example – Florida Courthouse Basement

- Restoration options: injection, internal trench, raised floor, eliminate floor penetrations
- Lessons learned: design buoyant slab, detail slab penetrations, well-points needed back-up, continuity of waterproofing system
Case Study Example – Electrical Vault Florida

- Leak sources: wall and floor joints, penetrations and openings
- Issues: storm impact on rising water table, age of existing construction and impractical positive-side solutions
- Existing system: multi-ply membrane without sub-surface drainage, urethane foam seals at penetrations
Case Study Example – Electrical Vault Florida

- Restoration options: negative-side crystalline slurry, seal open penetrations with hydrophilic sealant, manage water intrusion

- Lessons Learned: sub-surface drainage, pump system needed as back-up
Case Study Example – Connecticut Beach Foundation

- Leak sources: slab and wall condensation
- Conditioning and condensate on poorly insulated concrete
- Specified system: bentonite sheet and dual waterstop
10 DETAIL - WATERPROOFING

SCALE: 3" = 1'-0"
CETCO WATERPROOFING

FOUNDATION SLAB

Wood Pile

CONCRETE PILE CAP
BENTONITE WRAP

WP-2
NO SCALE 03/28/09

INSTALL VOLTEX CR WITH DARK GRAY (WOVEN) GEOTEXTILE AGAINST CONCRETE

CETCO WARRAINTY • 8120 N. 66TH STREET, SUITE 100 • MILWAUKEE, WISCONSIN 53218
Phone 414.384.3100 • Fax 414.384.3101 • CETCO.com

Hammonasset Beach State Park
Visitor’s Center
Madison, CT
© 2023 Global Environmental Technologies Company
Case Study Example – Connecticut Beach Foundation

- Restoration options: ventilation, cementitious or crystalline
- Lessons learned: peer review and dew point analysis could have identified potential issues, add vapor retarder
Case Study Example – Boston School Parking Garage

- Potential leak sources: pile and mat slab foundation, wall to slab transitions
- Water cut off wall did not function as intended
- Specified system: dual slab Bentonite at blindside, PVC/Bentonite composite on walls and Bentonite/HDPE on plaza
VOLCLAY WATERPROOFING

FOUNDATION SLAB
Helical Pile In Elevator Pit

WATER TIGHT INTEGRITY OF CAPPED HELICAL PILE SHAFT BY OTHERS

WATERSTOP-RX 101
WRAPPED AROUND SHAFT SECURE WITH ZIP- TIES

CONCRETE ELEVATOR SLAB

BENTOSEAL CANT

VOLTEX DS
ULTRASEAL BT
WATERSTOPPAGE GRANULAR BENTONITE
SOLID SHAFT EXTENSION

VOLTEX DS
ULTRASEAL BT
CORTEX
12" SOIL TARGET PATCH
COMPACTED GRAVEL OVER PREPARED SUB-BASE

INSTALL VOLTEX DS WITH GRAY GEOTEXTILE FACING INSTALLER

Shady Hill School
Cambridge, MA

© 2017 Geotextile Inc. and its member companies. All rights reserved.
Case Study Example – Boston School Parking Garage

- Restoration options: injection or negative side
- Lessons learned: prepare for worst case and potential movement, on-site construction monitoring required
Summary

- Manage Storm and Groundwater
- Code, Tolerance, Risk and Redundancy
- Design Details
- Construction Monitoring