The ACI 562 Repair Code

Code Requirements for Evaluation, Repair and Rehabilitation of Concrete Buildings

by

Keith Kesner¹ – Chair ACI 562
Lawrence Kahn² – Former Chair ACI 562

¹. Associate – WDP & Associates, P.C. – Norwalk, CT
². Professor - Georgia Tech – Atlanta, GA USA
Why a Repair Code?

• Long-term industry need
 – Variations in practice
 – Variations in repair performance
 – Establish required minimum practice
 – Help for building officials

• Large segment of construction industry
 – 20 Billion dollars
 – 8 Billion dollars in corrosion damage
Why a Repair Code?

- Repair performance
 - COE - 50% of repairs are not performing satisfactorily
 - Design errors
 - Construction errors
 - Material selection errors
 - Con Rep Net
 - 5 years – 80% of repairs are satisfactory
 - 10 years – 30% of repairs are satisfactory
 - 25 years – 10% of repairs are satisfactory
Why not a Repair Code?

• Complicated process
 – Took 7 years to develop

• Lack of consensus on practice
 – Lots of arguments

• Establish minimum practice requirements
 – What are minimum requirements?

• Concern about limiting creative solutions

• Fear of something new
Motivation

• ACI 318 Survey
 – One-half use for repair of existing structures
 – Use for non-building structures
• Conclusions from ACI 318 Survey
 – ACI 318 functioning beyond its intent
 – Code guidance for repairs is needed
Motivation

• Vision 2020
• Create a repair/rehabilitation code to:
 – Establish evaluation, design, materials and construction practices
 – Raise level of repair/protection performance
 – Establish clear responsibilities
 – Provide Building Officials with means to issue permits
Motivation

- Challenges of existing structures
 - Hidden damage
 - Unknown structural conditions
Motivation

• Lack of specific code requirements:
 – Variations in repair practice
 – Different levels of safety and reliability
 – No direction for building officials
Building Codes

- Developed by consensus process
 - Written by code writing organization
 - Code committee
 - Membership balance
 - Producers / Users / General Interest
- Written for design professionals
 - Architects and engineers

Code of Hammurabi
1772 B.C.
Building Codes

• Adopted in law
 – Into a general building code

• ANSI Standardization Process
 – Approval of code writing committee
 – Approval of code writing organization
 – Publication for public comments
 – Verification process is followed
Codes vs. Guidelines

• Codes
 – Adopted by regulatory agencies
 – Mandatory language (shall not should)
 – Establish **required** practice
 – ACI 318, ASCE 7, IBC, IEBC - codes

• Guidelines
 – Non-mandatory language (**should** not shall)
 – Establish **recommended** practice
 – ACI 364, ICRI documents - guidelines
Code vs. Commentary

- **Code**
 - Mandatory language (shall not should)
 - Requirements to be followed
 - Only codes and standards as references

- **Commentary**
 - Guidance on how to satisfy code
 - Non-mandatory language
 - The why and the how
 - Any references can be used
How was ACI 562 Developed?

• Committee formed in Spring 2006
• ACI code committee – “Evaluation, Repair and Rehabilitation of Concrete Buildings”
• Starting points
 – Existing U.S. building codes
 – Existing international repair codes
 – Philosophy of code
Review of Existing Codes

• U.S. Codes
 – ACI 318, Chapter 20
 – IBC, Chapter 34
 • 5% rule trigger for upgrade to current code
 • Repair requirements vary with edition
 – International Existing Building Code
 • First published in 2003
 • ACI 562 developed for adoption into IEBC
ACI 562 - Philosophy

- Emphasize performance based rather than prescriptive requirements
- Encourage creativity and flexibility
- Enhance life safety (equivalent safety)
- Extend service life
- Provide sustainable and economic alternative
- Establish responsibilities
ACI 562 - Organization

- Part I – General
 - General Requirements – Chapter 1
 - Terms / Definitions – Chapter 2
 - Standards – Chapter 3

- Part II - Evaluation Requirements
 - Design Basis – Chapter 4
 - Loads – Chapter 5
 - Analysis of Existing Structures – Chapter 6

- Part III – Implementation
 - Structural Repair Design – Chapter 7
 - Durability – Chapter 8
 - Construction – Chapter 9
 - Quality Assurance – Chapter 10
Responsibilities

• Licensed Design Professional
 – Evaluation
 – Repair & durability design

• Constructor – through plans and specifications
 – Construction sequencing, means & methods
 – Follow evaluation and design specifications
 – Report uncovered defects

• Owner – through general building code
 – Known conditions and maintenance
ACI 562 – Key Points

- Determine design basis for repairs
- Preliminary evaluation
 - Substantial structural damage
- Analysis, design and durability
- Quality assurance
- Maintenance and monitoring
Design Basis Code

• General building code under which the project is completed

• Possible design basis codes:
 – IBC
 – IEBC
 – Local building code - general building code
 – ACI 318
 – Combination of ACI 318 and 562
When do structures need to satisfy current codes?

- IBC – Chapter 34
 - If alterations or additions increase force in a structural element by more than 5%
 - Repairs to elements that are found to unsound or structurally deficient
- IEBC
 - When substantial structural damage has occurred
- When required by a local code or building official
Applicability

- Existing concrete buildings
- Superstructure, foundations (slabs), precast elements – structural load path
- Structural vs. nonstructural – “Unsafe”
- Composite members – concrete
- Nonbuilding structures when required
Controversy – Maintenance

- To assure durable repairs
- “Maintenance recommendations shall be documented…”
- “A maintenance protocol should be provided…”
Preliminary Evaluation

- Preliminary evaluation
 - Determine extent of structural damage present
 - Evaluation based upon in-place conditions
 - Can use assumed material properties

- Substantial structural damage?
 - Determines if compliance with current code is required
Substantial Structural Damage

• Defined in IEBC
 – Reduction of greater than 33% to the vertical elements of the lateral force resisting system
 – Reduction of greater than 20% of the vertical capacity in an area that supports more than 30% of the structures area
 – Requirements vary with IEBC edition

• Trigger for upgrade of structure to current code requirements
Evaluation & Analysis

- Preliminary evaluation
- When there is reason to question
- Structural assessment/structural analysis
- As-measured section properties and dimensions
- Material properties
 - Available documents + historical tables
 - Tests
Evaluation

- Determine existing conditions
- Safety – shoring
- Based on in-situ geometric and material properties
- Number of samples (ACI 214)
- Load tests (ACI 437 versus ACI 318)
Load and Resistance Factors

- Resistance, capacity reduction factors, Φ
 - Measured properties
 - Failure mode
 - Historic material properties
 - Default values
Loads and Load Combinations

- Essentially ASCE/SEI 7 (ACI 318)
- Construction, unoccupied ASCE/SEI 37
- External reinforcing systems
 - $U_{ex} = 1.2D + 0.5L + A_k + 0.2S$
 - Fire + elevated temperature with FRP
 - External unprotected reinforcement
Φ factors

• Encourage confirmation of material properties

• Φ factor from ACI-318
 – No confirmation of material properties

• ACI 318 Chapter 20 if material properties are confirmed
 – $\Phi_{\text{tension}} = 1$
 – $\Phi_{\text{compression}} = 0.9$
 – $\Phi_{\text{shear}} = 0.8$
Analysis, Design and Durability

- Performance based – 3D, nonlinear or…
 - Make a patch or add a wall
- Actual load and force distribution
- Reinforcement and repair materials
 - e.g. FRP’s and polymer concretes
- Compatibility
- Fire resistance
- Service life
Analysis

- Member properties
- Material degradation
- Deformed condition
- Redistribution of forces
- Shrinkage & creep
- Soil-structure interaction
- Load path
Seismic Resistance

• ASCE/SEI 31 – Seismic Evaluation
• ASCE/SEI 41 – Seismic Rehabilitation
• Implications for building officials, West coast vs.
Evaluation & Analysis - Testing

- Destructive & nondestructive
- Cores (ASTM C42 & C823)
- NDT when valid correlation is established.
- Steel Reinforcement: historical values, samples (ASTM A370)
Load Testing

• ACI 437-13
 – New code for load testing

• Why not ACI 318-11 Chapter 20?
Design of Structural Repairs

- Strength & Serviceability
- Effect of repair on structural system
- Composite behavior
 - Tensile strength
 - Adhesives
 - Pull-off test

Bond: 1.5 x required ++
Reinforcing

- FRP (ACI 440.6) and steel
- Fire (external reinforcement)
 \[U_{ex} = 1.2D + 0.5L + A_k + 0.2S \]
- Existing prestressing
- Supplemental posttensioning
 - Secondary effects
 - Define repair sequence: removal, placement, stressing
Durability

• Durable materials
 – interaction with existing structure (compatibility)
 – in environment
 – anticipated maintenance
• Corrosion protection & cover
• Corrosion & deterioration of reinforcement
 – Corrosive environment
 – Existing reinforcement
 – Galvanic action
• Cracks
Construction

• Stability and shoring
 – Designed by an LDP
 – Consider: sequence, in-situ conditions, changes in conditions
Construction

• Temporary conditions
 – ASCE/SEI 37 when feasible
 – Stalled projects?

• Environmental
 – Instructions to contractor
 • Report new conditions
 • Control of debris
Quality Assurance

• Require testing and inspection
 – Commentary list of items to inspect

• Repair inspectors should be qualified by demonstrating competence

• LDP may inspect their projects

• Testing as required by LDP

• Existing conditions shall not be concealed
 – Construction observation
ACI 562 - Going Forward

- Published by ACI in March 2012
- New code cycle
 - Starts at upcoming ACI convention
 - Work towards adoption into IEBC
- Education on using ACI 562
 - ICRI 150 Notes
 - Seminars
 - Presentations
ACI 562 - Going Forward

- Improve the state of practice
- Incorporate work of other committees / groups
 - Repository of knowledge
 - ACI Guidelines
 - ICRI Documents
Impact

• Cost savings for repair of repair in $ billions
• Code requires accountability of both engineers and contractors
• Repair industry is a serious endeavor –
 – Education and skills required
• Engineering requirements lead to clear specifications and increased quality
• Safer structures
Acknowledgements

• ACI TAC for approval of code
• Efforts of ACI and ICRI members in creating code
 – 15 Engineers
 – 3 Academics
 – 3 Contractors
 – 1 Material supplier
 – 1 Owner
 – 1 Building code official
Thank You

Questions?