Case Report: Great Blue Heron (*Ardea herodias*) Morbidity and Mortality Investigation in Maryland’s Chesapeake Bay

Cindy P. Driscoll D.V.M., Maryland Department of Natural Resources Fish and Wildlife Health Program, Oxford, Maryland
Peter C. McGowan, U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, Maryland
Erica A. Miller D.V.M., Tri-State Bird Rescue and Research Inc., Newark, Delaware
Wayne W. Carmichael Ph.D., Department of Biological Sciences, Wright State University, Dayton, Ohio

1. Open a blank Powerpoint presentation; and click on “insert”, then on “Text Box”. Type in the title and authors and move the text box to the top and center.

2. Next click on “insert” then on “Picture” and insert your logo or the logos of any of the other authors

3. Drag the logos to wherever you want them (usually up near the title or author names and affiliations.)
ABSTRACT
In the fall of 2001 reports of avian morbidity and mortality events were received by the Maryland Department of Natural Resources (MD DNR), US Fish & Wildlife Service (FWS), and Tri-State Bird Rescue and Research (TSBRR). During this time, three separate dieoffs were documented which included waterfowl, gulls, and colonial waterbirds. At a private waterfowl sanctuary in Queen Anne’s County, approximately 12 captive waterfowl died over a 2 week period. At Poplar Island in Talbot County, it is estimated that approximately 100 birds of different species had died. In the third event, at least 9 great blue herons (Ardea herodias) were documented dead or dying from three counties. All events showed evidence of aconnection with a water bloom of the cyanobacterium (blue-green algae) Microcystis. This report will summarize findings of the GBH event.

INVESTIGATION
The great blue heron (GBH; Figure 1) population is stable in the Chesapeake Bay. These majestic colonial water birds are symbolic of wetland and Bay health and a welcome sign to visitors enjoying the Eastern Shore of Maryland. On October 5, 2001, the first GBH was collected from Poplar Island (Figure 2). Throughout the next 2 months, 2 birds were found in Anne Arundel County, and 6 in Queen Anne’s County (Figure 2). Most live birds were taken to the TSBRR facility in Newark, DE. Birds presented with clinical signs of emaciation, lethargy, inability to fly, and an unusually small abdomen. Upon admission to the rehabilitation facility the blood profiles (Table 1) revealed anemia and varying degrees of hypoproteinaemia, and all birds were dehydrated and depressed, were in lateral recumbency, and had profuse diarrhea. At least two birds were in respiratory distress. Due to poor prognosis, euthanasia was performed and necropsies were conducted on all birds (Table 2).

On October 18, 2001 a GBH was euthanized and sent to the National Wildlife Health Center, Madison, WI, for a post-mortem examination. Remaining birds were necropsied at the MD DNR Cooperative Oxford Laboratory or at TSBRR. Consistent necropsy findings included emaciation, decreased muscle mass, pale muscle color, fat atrophy, gastro-intestinal parasitism, and excessive deposits of waxy yellow fat in the abdomen, subcutis, and throughout the body cavity (Figures 3 and 4). A gross necropsy diagnosis of steatitis was determined to be the consistent finding in all carcasses. Selected tissues were sent to the Armed Forces Institute of Pathology for histopathological confirmation of steatitis (Figure 5).

Steatitis is defined as an inflammation of adipose tissue . In mammals, it is associated with a deficiency of Vitamin E and or Selenium. Vitamin E and selenium have antioxidant properties and are essential to cell membrane integrity. Interaction between Vitamin E / Selenium and dietary unsaturated lipids likely play a role in the pathogenesis of steatitis though the exact mechanism is unknown. In birds, this condition is suspected to be caused by a diet high in rancid or oily fish containing polyunsaturated fats . Steatitis has been reported in several other bird species (black crowned night heron Nycticorax nycticorax, osprey Pandion haliaetus, double crested cormorant Phalacrocorys auritus). Concurrent with gross necropsy findings, was the finding of unusually large counts of the cyanobacterium (blue-green algae) Microcystis plus some other cyanobacteria and algae. Microcystis is known to produce the potent cyclic peptide toxins called Microcystins. These potential toxin producers were found in water samples collected from the three die-off locales (Figure 2). Microcystins are hepatotoxins produced by at least two Microcystis sp. and several other genera of cyanobacteria. These potent toxins are known to be toxic to fish, mammals (including humans), and birds through skin contact, ingestion, and possibly inhalation . Microcystis are part of a group of microorganisms that are responsible for harmful algal blooms (HABs; Figure 6) that include: red tides, paralytic and neurotoxic shellfish poisoning, Pfiesteria, etc.

While analysis of all bird tissues was the goal, due to monetary constraints, only the tissues from those birds dying in the GBH event were tested for microcystin. Liver samples from six of the eight GBH in custody were sent to Wright State University for cyanobacterial toxin identification using immunoassay (ELISA), plus liquid chromatography/mass spectrophotometry (LC/MS). Results of the ELISA and LC/MS toxin analyses detected microcystin in 5 of the 6 samples. Toxic levels of microcystin known to cause acute lethal toxicosis were found in 4 of the 6 tissue samples (Table 1). The significance of these findings is currently under investigation.

ACKNOWLEDGEMENTS
The authors would like to acknowledge the assistance from the following individuals: Dr. Dave Goodwin, Maryland Department of Natural Resources and the USFWS Chesapeake/Nantahuala River Tornan for supplying funds for tissue analyses; Dr. Brett Saladino, Armed Forces Institute of Pathology, and Drs. Grace McGlaughlin, David Greene, and Kimberly Miller, National Wildlife Health Center, for pathology exams of birds and providing national steatitis records for avian species; Carole Duvall, Maryland Environmental Service for organizing bird surveys at Poplar Island; Blue Heron Golf Course staff for their cooperation during the investigation; and Queen Anne’s County Animal Control staff for their assistance in collecting herons.

REFERENCES

4. Click on “insert text box” and insert your write/up (“paper”). We recommend inserting each paragraph in a separate text box so that the paragraphs can be arranged around photos and tables at a later time.

NOTE: this poster is a little too wordy and has more references and acknowledgments than are usually needed.
Case Report: Great Blue Heron (Ardea herodias) Morbidity and Mortality Investigation in Maryland’s Chesapeake Bay

Cindy P. Driscoll D.V.M., Maryland Department of Natural Resources Fish and Wildlife Health Program, Oxford, Maryland
Peter C. McGowan, U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, Maryland
Erica A. Miller D.V.M., Tri-State Bird Rescue and Research Inc., Newark, Delaware
Wayne W. Carmichael Ph.D., Department of Biological Sciences, Wright State University, Dayton, Ohio

ABSTRACT

In the fall of 2001 reports of avian morbidity and mortality events were received by the Maryland Department of Natural Resources (MD DNR), US Fish & Wildlife Service (FWS), and Tri-State Bird Rescue and Research (TSBRR). During this time, three separate die-offs were documented which included waterfowl, gulls, and colonial waterbirds. At a private waterfowl sanctuary in Queen Anne’s County, approximately 12 captive waterfowl died over a 2 week period. At Poplar Island in Talbot County, it is estimated that approximately 100 birds of different species had died. In the third event, at least 9 great blue herons (Ardea herodias) were documented dead or dying from three counties. All events showed evidence of a connection with a water bloom of the cyanobacterium (blue-green algae) Microcystis. This report will summarize findings of the GBH event.

INVESTIGATION

The great blue heron (GBH; Figure 1) population is stable in the Chesapeake Bay. These majestic colonial water birds are symbolic of wetland and Bay health and a welcome sign to visitors enjoying the Eastern Shore of Maryland. On October 5, 2001, the first GBH was collected from Poplar Island (Figure 2). Throughout the next 2 months, 2 birds were found in Anne Arundel County, and 6 in Queen Anne’s County (Figure 2). Most live birds were taken to the TSBRR facility in Newark, DE. Birds presented with clinical signs of emaciation, lethargy, inability to fly, and an unusually hard abdomen. Upon admission to the rehabilitation facility the blood profiles (Table 1) revealed anemia and varying degrees of hypoproteinemia, and all birds were dehydrated and depressed, were in lateral recumbency, and had profuse diarrhea. At least two birds were in respiratory distress. Due to poor prognosis, euthanasia was performed and necropsies were conducted on all birds (Table 2).

On October 18, 2001 a GBH was euthanized and sent to the National Wildlife Health Center, Madison, WI, for a post-mortem examination. Remaining birds were necropsied at the MD DNR Cooperative Oxford Laboratory or at TSBRR. Consistent necropsy findings included emaciation, decreased muscle mass, pale muscle color, fat atrophy, gastro-intestinal parasitism, and excessive deposits of waxy yellow fat in the abdomen, subcutis, and throughout the body cavity (Figures 3 and 4). A gross necropsy diagnosis of steatitis was determined to be the consistent finding in all carcasses. Selected tissues were sent to the Armed Forces Institute of Pathology for histopathological confirmation of steatitis (Figure 5).

While analysis of all birds tissue was the goal, due to monetary constraints, only the tissues from those birds dying in the GBH event were tested for microcystin. Liver samples from six of the eight GBH in custody were sent to West State University for cyano-bacterial toxin identification using immunoassay (ELISA), plus liquid chromatography/mass spectrophotometry (LC/MS). Results of the ELISA and LC/MS toxin analyses detected microcystin in 5 of the 6 samples. Toxic levels of microcystin known to cause acute lethal toxicosis were found in 4 of the 6 tissue samples (Table 1). The significance of these findings is currently under investigation. Monitoring of bird populations in this geographic area is ongoing and will be continuing over the next few years, depending on the level of funding available.

5. Add any tables that summarize your findings
In the fall of 2001 reports of avian morbidity and mortality events were received by the Maryland Department of Natural Resources (MD DNR), US Fish & Wildlife Service (FWS), and Tri-State Bird Rescue and Research (TSBRR). During this time, three separate die-offs were documented which included waterfowl, galliforms, and non-waterfowl. At a private waterfront sanctuary in Queen Anne’s County, approximately 12 captive waterfowl died over a 2 week period. At Poplar Island in Talbot County, it was estimated that approximately 100 birds of different species had died. In the third event, at least 9 great blue herons (Ardea herodias) were documented dead or dying from three counties. All events showed evidence of a connection with a water bloom of cyanobacteria (blue-green algae).

Case summaries (5 GBHs presented to TSBRR)

<table>
<thead>
<tr>
<th>ID</th>
<th>SEX</th>
<th>Location</th>
<th>Wgt</th>
<th>BCI</th>
<th>Metals</th>
<th>Microcystin</th>
<th>Treatment on entry</th>
<th>On-going care</th>
<th>Time in care</th>
<th>Date of Euthanasia</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAHE16</td>
<td></td>
<td>M Stevensville</td>
<td>2610</td>
<td>N/A</td>
<td>3</td>
<td>N/A</td>
<td>N/A</td>
<td>Dexamethasone 3mg/kg (1/3)</td>
<td></td>
<td>3 days--died</td>
</tr>
<tr>
<td>WHAHE25</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>1.65</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>Ivermectin 0.2mg/kg SQ once (1/3)</td>
<td></td>
<td>7 days--euthanized (agonal)</td>
</tr>
<tr>
<td>WHAHE24</td>
<td></td>
<td></td>
<td></td>
<td>1.63</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>Metronidazole 50mg/kg PO BID (3/3)</td>
<td></td>
<td>euthanized on arrival (agonal)</td>
</tr>
<tr>
<td>WHAHE23</td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>Vit E 2000U PO BID (2/3)</td>
<td></td>
<td>Selenious 20mg PO SID (1/3)</td>
</tr>
<tr>
<td>WHAHE22</td>
<td></td>
<td></td>
<td></td>
<td>0.24</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>Gavage feed prn (3-5% of body weight, up to 3x/day) if not self-feeding on fish (3/3)</td>
<td></td>
<td>5 days--euthanized (morbund)</td>
</tr>
<tr>
<td>WHAHE21</td>
<td></td>
<td></td>
<td></td>
<td>0.95</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td>WHEAHE21 5 days--euthanized (morbund)</td>
<td></td>
</tr>
<tr>
<td>WHAHE20</td>
<td></td>
<td></td>
<td></td>
<td>1.63</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td>WHEAHE20 euthanized on arrival (agonal)</td>
<td></td>
</tr>
<tr>
<td>WHAHE19</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>0.95</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td>WHEAHE19 7 days--euthanized (agonal)</td>
<td></td>
</tr>
<tr>
<td>WHAHE18</td>
<td></td>
<td></td>
<td></td>
<td>1.25</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td>WHEAHE18 euthanized on arrival (agonal)</td>
<td></td>
</tr>
</tbody>
</table>

Presentation
- Not standing (5/5)
- Firm, “ropy” abdomen (5/5)
- Open wound on back (1/5)
- Yellow-brown diarrhea (5/5)
- Agonal respiration (1/5)
- Covered in mud (1/5)

Treatment on entry
- Oxytetracycline 0.2mg/kg SQ once (1/3)
- Metronidazole 50mg/kg PO BID (3/3)
- Vit E 2000U PO BID (2/3)
- Selenious 20mg PO SID (1/3)
- Gavage feed (1-3% of body weight, up to 3x/day) if not self-feeding on fish (3/3)

Time in care (avg. = 3 days; range = 0-7 days)

A. GBH = Great Blue Heron
B. BCI = Body Condition Index, scale of 1-5 (1 = emaciated, 3 = normal, 5 = fat)

REFERENCES

ACKNOWLEDGMENTS

The authors would like to acknowledge the assistance from the following individuals: Dr. Dave Goshorn, National Wildlife Health Center, Madison, WI, for pathology exams of birds and providing national steatitis records for avian species; Dr. Steve McGowan, Maryland Department of Natural Resources and the USFWS Chesapeake-Bay/Neuse River Ecotone for supplying funds for tissue analysis; Dr. Brent Stahlman, Arnold Forest Institute of Pathology, and Dr. Gino McGrath, Dr. David Greene, and Kimberly Miller, National Wildlife Health Center, for pathology exams of birds and providing national mortality records for avian species. Care of birds was supervised by Maryann L. D’Amato, Eastern United States Ecotone, and Maryann L. D’Amato.
Case Report: Great Blue Heron (Ardea herodias) Morbidity and Mortality Investigation in Maryland’s Chesapeake Bay

Cindy P. Driscoll D.V.M., Maryland Department of Natural Resources Fish and Wildlife Health Program, Oxford, Maryland
Peter C. McGowan, U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, Maryland
Erica A. Miller D.V.M., Tri-State Bird Rescue and Research Inc., Newark, Delaware
Wayne W. Carmichael Ph.D., Department of Biological Sciences, Wright State University, Dayton, Ohio

ABSTRACT
In the fall of 2001 reports of avian morbidity and mortality events were received by the Maryland Department of Natural Resources (MD DNR), US Fish & Wildlife Service (FWS), and Tri-State Bird Rescue and Research (TSBRR). During this time, three separate die-offs were documented which included waterfowl, gulls, and colonial waterbirds. At a private waterfowl sanctuary in Queen Anne’s County, approximately 12 captive waterfowl died over a 2 week period. At Poplar Island in Talbot County, it is estimated that approximately 100 birds of different species had died. In the third event, at least 9 great blue herons (Ardea herodias) were documented dead or dying from three counties. All events showed evidence of a connection with a water bloom of the cyanobacterium (blue-green algae) Microcystis. This report will summarize findings of the GBH event.

INVESTIGATION
The great blue heron (GBH, Figure 1) population is stable in the Chesapeake Bay. These majestic colonial water birds are symbolic of wetland and Bay health and a welcome sign to visitors enjoying the Eastern Shore of Maryland. On October 5, 2001, the first GBH was collected from Poplar Island (Figure 2). Throughout the next 2 months, 2 birds were found in Anne Arundel County, and 6 in Queen Anne’s County (Figure 2). Most live birds were taken to the TSBRR facility in Newark, DE. Birds presented with clinical signs of emaciation, lethargy, inability to fly, and an unusually hard abdomen. Upon admission to the rehabilitation facility the blood profiles (Table 1) revealed anemia and varying degrees of hypoproteinemia, and all birds were dehydrated and depressed, were in lateral recumbency, and had profuse diarrhea. At least two birds were in respiratory distress. Due to poor prognosis, euthanasia was performed and necropsies were conducted on all birds (Table 2).

On October 18, 2001 a GBH was euthanized and sent to the National Wildlife Health Center, Madison, WI, for a post-mortem examination. Remaining birds were necropsied at the MD DNR Cooperative Oxford Laboratory or at TSBRR. Consistent necropsy findings included emaciation, decreased muscle mass, pale muscle color, fat atrophy, gastro-intestinal parasitism, and excessive deposits of waxy yellow fat in the abdomen, subcutis, and throughout the body cavity (Figures 3 and 4). A gross necropsy diagnosis of steatitis was determined to be the consistent finding in all carcasses. Selected tissues were sent to the Armed Forces Institute of Pathology for histopathological confirmation of steatitis (Figure 5).

Steatitis is defined as an inflammation of adipose tissue 1. In mammals, it is associated with a deficiency of Vitamin E and Selenium. Vitamin E and selenium have antioxidant properties and are essential to cell membrane integrity. Interaction between Vitamin E / Selenium and dietary unsaturated lipids likely play a role in the pathogenesis of steatitis though the exact mechanism is unknown. In birds, this condition is suspected to be caused by a diet high in rancid or oily fish containing polyunsaturated fats 1. Steatitis has been reported in several other bird species (black crowned night heron Nycticorax nycticorax, osprey Pandion haliaetus, double crested cormorant Phalacrocorax auritus) 2.3.4.5

Concurrent with gross necropsy findings, was the finding of unusually large counts of the cyanobacterium (blue-green algae) Microcystis plus other cyanobacteria and algae. Microcystis is known to produce the potent cyclic peptide toxins called Microcystins. These potential toxin producers were found in water samples collected from the three die-off locales (Figure 2). Microcystins are hepatotoxins produced by at least two Microcystis species and several other genera of cyanobacteria. These potent toxins are known to be toxic to fish, mammals (including humans), and birds through skin contact, ingestion, and possibly inhalation 2. Microcystins sp. are part of a group of microorganisms that are responsible for harmful algal blooms (HABs); Figure 6) that include: red tides, paralytic and neurotoxic shellfish poisoning, Pfiesteria, etc.

HABs are part of a group of microorganisms that are responsible for harmful algal blooms (HABs); Figure 6) that include: red tides, paralytic and neurotoxic shellfish poisoning, Pfiesteria, etc.

REFERENCES

ACKNOWLEDGMENTS
The authors would like to acknowledge the assistance from the following individuals: Dr. Dave Goshorn, Maryland Department of Natural Resources and the USFWS Chesapeake/Susquehanna River Ecotone for supplying funds for tissue analyses; Dr. Bert Saffran, Armed Forces Institute of Pathology, and Dr. Sheila McLaughlin, David Greene, and Kimberly Miller, National Wildlife Health Center, for pathology exams of birds going and will be conducted over the next few years, depending on the level of funding available.

Table 1. Blood/tissue chemistry and Body Condition Index (BCI) for 6 great blue herons collected from the Chesapeake Bay during the Fall 2001.

<table>
<thead>
<tr>
<th>ID</th>
<th>SEX</th>
<th>Location</th>
<th>Wgt (g)</th>
<th>Metals</th>
<th>HCT/BC</th>
<th>BCI</th>
<th>Steatitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAHE16</td>
<td></td>
<td>Poplar Is.</td>
<td>1270</td>
<td>23</td>
<td>3.0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>WHAHE20</td>
<td></td>
<td>M</td>
<td>5 days</td>
<td>4.0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>WHAHE22</td>
<td></td>
<td>M</td>
<td>5 days</td>
<td>4.0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>WHAHE24</td>
<td></td>
<td>M</td>
<td>5 days</td>
<td>4.0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>WHAHE25</td>
<td></td>
<td>M</td>
<td>5 days</td>
<td>4.0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>WHAHE27</td>
<td></td>
<td>M</td>
<td>5 days</td>
<td>4.0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 2. Case summaries (5 GBHs presented to TSBRR)

<table>
<thead>
<tr>
<th>Presentation</th>
<th>Treatment on entry</th>
<th>Time in care</th>
<th>Case summaries (5 GBHs presented to TSBRR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+Not standing (5/5)</td>
<td>+Dexamethasone 3mg/kg (1/3)</td>
<td>3 days</td>
<td>Head and neck paralysis (1/5)</td>
</tr>
<tr>
<td>Yellow-brown diarrhea (5/5)</td>
<td>Hetastarch PO (2/3)</td>
<td>3 days</td>
<td>Limb weakness (1/5)</td>
</tr>
<tr>
<td>Agoral respiration (5/5)</td>
<td>2.5% Dextrose in Lactated Ringer’s Solution, 35-40cc IV (3/3)</td>
<td>3 days</td>
<td>Diarrhea (1/5)</td>
</tr>
</tbody>
</table>

Figure 3. Great blue heron (Ardea herodias)

Figure 2. Location of avian morbidity events, harmful algal blooms, and sites where debilitated great blue herons were collected in the Chesapeake Bay during the Fall 2001.

7. Rearrange the text and photos and tables so that the information flows well and looks good
Case Report: Great Blue Heron (*Ardea herodias*) Morbidity and Mortality Investigation in Maryland’s Chesapeake Bay

Cindy P. Driscoll D.V.M., Maryland Department of Natural Resources Fish and Wildlife Health Program, Oxford, Maryland

Peter C. McGowan, U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, Maryland

Erica A. Miller D.V.M., Tri-State Bird Rescue and Research Inc., Newark, Delaware

Wayne W. Carmichael Ph.D., Department of Biological Sciences, Wright State University, Dayton, Ohio

In the fall of 2001 reports of avian morbidity and mortality events were received by the Maryland Department of Natural Resources (MD DNR), US Fish & Wildlife Service (FWS), and Tri-State Bird Rescue and Research (TSBRR). During this time, three separate deets were documented which included waterfowl, gulls, and colonial waterbirds. At a private waterfowl sanctuary in Queen Anne’s County, approximately 12 captive waterfowl died over a 2 week period. At Poplar Island in Talbot County, it is estimated that approximately 100 birds of different species had died. In the third event, at least 9 great blue herons (*Ardea herodias*) were documented dead or dying from three counties. All events showed evidence of a connection with a water bloom of the cyanobacterium (blue-green algae) *Microcystis*. This report will summarize findings of the GBH event.

INVESTIGATION

The great blue heron (GBH; Figure 1) population is stable in the Chesapeake Bay. These majestic colonial water birds are symbolic of wetland and Bay health and a welcome sign to visitors enjoying the Eastern Shore of Maryland. On October 5, 2001, the first GBH was collected from Poplar Island (Figure 2). Throughout the next 2 months, 2 birds were found in Anne Arundel County, and 6 in Queen Anne’s County (Figure 2). Most live birds were taken at the TSBRR facility in Newark, DE. Birds presented with clinical signs of emaciation, lethargy, inability to fly, and an unusually hard abdomen. Upon admission to the rehabilitation facility the blood profiles (Table 1) revealed anaemia and varying degrees of hyperlipoproteinaemia, and all birds were dehydrated and depressed, were in lateral recumbency, and had profuse diarrhea. At least two birds were in respiratory distress. Due to poor prognosis, euthanasia was performed and necropsies were conducted on all birds (Table 2).

Steatitis is defined as an inflammation of adipose tissue in mammals, it is associated with a deficiency of Vitamin E and Selenium. Vitamin E and selenium have antioxidant properties and are essential to cell membrane integrity. Interaction between Vitamin E and Selenium and dietary unsaturated lipids likely play a role in the pathogenesis of steatitis though the exact mechanism is unknown. In birds, this condition is suspected to be caused by a diet high in rancid or oily fish containing polyunsaturated fats. Steatitis has been reported in several other bird species (black crowned night heron *Nycticorax nycticorax*, osprey *Pandion haliaetus*, double crested cornetorl *Phalacrocorax auritus*).

Concurrent with gross necropsy findings, was the finding of unusually large counts of the cyanobacterium (blue-green algae) *Microcystis* plus some other cyanobacteria and algae. *Microcystis* is known to produce the potent cyclic peptide toxins called *Microcystins*. These potential toxin producers were found in water samples collected from the three die-off locales (Figure 2). *Microcystis* are hepatotoxins produced by at least two *Microcystis* sp. and several other genera of cyanobacteria. These potent toxins are known to be toxic to fish, mammals (including humans), and birds through skin contact, ingestion, and possibly inhalation. *Microcystis* sp. are a part of a group of microorganisms that are responsible for harmful algal blooms (HABs; Figure 6) that include: red tides, paralytic and neurotoxic shellfish poisoning, *Pfiesteria*, etc.

REFERENCES

ACKNOWLEDGEMENTS

The authors would like to acknowledge the assistance from the following individuals: Dr. Dave Godfrey, Maryland Department of Natural Resources and the USFWS Chesapeake/Bay/Lake Erie Focus for supplying funds for tissue analyses; Dr. Bob Saffney, Arnold Research Institute for Pathology; Dr. Chris McGuinness, David Greene, and Kimberly Miller, National Wildlife Health Center, for pathology studies of birds and providing national waterfowl database for avian焗菊inux. BCJ Dillman, Maryland Environmental Service for organizing bird surveys at Poplar Island, Blue Heron Golf Course staff for their cooperation during the investigations, and Queen Anne’s County Animal Control staff for their assistance in collecting herons.

Table 1. Blood/tissue chemistry and Body Condition Index (BCI) for 6 great blue herons collected from the Chesapeake Bay during the Fall 2001.

Table 2. Case summaries (5 GBHs presented to TSBRR)
Case Report: Great Blue Heron (Ardea herodias) Morbidity and Mortality Investigation in Maryland’s Chesapeake Bay

Erica A. Miller D.V.M., Tri-State Bird Rescue and Research Inc., Newark, Delaware
Wayne W. Carmichael Ph.D., Department of Biological Sciences, Wright State University, Dayton, Ohio

On October 18, 2001 a GBH was euthanized and sent to the National Wildlife Health Center, decreased muscle mass, pale muscle color, fat atrophy, gastro-intestinal parasitism, and excessive deposits of waxy yellow fat in the abdomen, subcutis, and throughout the body cavity (Figures 3 and 4). A gross necropsy diagnosis of steatitis was determined to be the consistent finding in all carcases. Selected tissues were sent to the Armed Forces Institute of Pathology for histopathological confirmation of steatitis (Figure 5).

Table 1. Blood/tissue chemistry and Body Condition Index (BCI) for 6 great blue herons collected from the Chesapeake Bay during the Fall 2001

<table>
<thead>
<tr>
<th>ID</th>
<th>Sex</th>
<th>Location</th>
<th>Age</th>
<th>BCI</th>
<th>BC</th>
<th>BB</th>
<th>TST</th>
<th>WHAHE27</th>
<th>WHAHE28</th>
<th>WHAHE29</th>
<th>WHAHE30</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAHE21</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>4.05</td>
<td>4.85</td>
<td>4.05</td>
<td>4.85</td>
<td>4.85</td>
</tr>
<tr>
<td>WHAHE22</td>
<td>M</td>
<td>Marlowe</td>
<td>20</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>WHAHE23</td>
<td>M</td>
<td>Cape Co.</td>
<td>22</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>WHAHE24</td>
<td>M</td>
<td>Stevensville</td>
<td>2960</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>WHAHE25</td>
<td>M</td>
<td>Stevensville</td>
<td>2610</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>1.65</td>
<td>1.65</td>
<td>1.65</td>
<td>1.65</td>
<td>1.65</td>
</tr>
</tbody>
</table>

VIT = Vitamin (mg/kg body weight)
BC = Body condition index; scale of 1-5 (1 = emaciated, 3 = normal, 5 = fat)
TC = Trace elements expressed in µg/g
BCI = Body condition index, scale of 1-5 (1 = emaciated, 3 = normal, 5 = fat)

Organochlorine =GC/MS/GC screens that detect insecticides (organophosphates, carbamates and organochlorines), polychlorinated biphenyls, dieldrin, and endrin.

Organochlorine = GC/MS/GC screens that detect organochlorine pesticides (organochlorines, carbamates and organochlorines), polychlorinated biphenyls, dieldrin, and endrin.

Table 2. Case summaries (5 GBHs presented to TSBBR)

Presentation
- Not standing (5/5)
- Firm, “ropy” abdomen (5/5)
- Open wound on back (5/5)
- Yellow-brown diarrhea (5/5)
- Agonal respiration (5/5)
- Covered in mud (5/5)

Treatment on entry
- N-A
- Dexamethasone 3mg/kg (3/3)
- Metrizamide 6mg/kg (PO BID 3/3)
- Vit E 500UI PO BID (2/3)
- Selenium 20mg/kg PO SID (3/3)
- Garlic feed (0.5% of body weight, up to 3x/day) if not self-feeding on fish (3/3)

Time in care (avg. = 3 days; range = 0-7 days)

WAHE20 5 days—euthanized (moribund) WAHE22 euthanized on arrival (agonal)
WAHE23 3 days—died
WAHE24 7 days—euthanized (agonal)
WAHE25 euthanized on arrival (agonal)

References

ACKNOWLEDGMENTS

The authors would like to acknowledge the assistance of the following individuals: Dr. Donna Goodrich, Maryland Department of Natural Resources and the USFWS Chesapeake/South Atlantic Region for supplying funds for tissue analysis; Dr. Bette Sadowski, American Forest Institute of Pathology; and Dr. Vince McIver, David Greene, and Kimberly Miller, National Wildlife Health Center, for pathology exams of birds going and will be conducted over the next few years, depending on the level of funding available.