Excessive accumulation of aluminum (Al) in the bones of patients on long term parenteral nutrition (PN): post-mortem analysis

Pamela Kruger, Patrick Parsons
Wadsworth Center, New York State Department of Health, Albany, New York

Lyn Howard, Christopher Ashley
Department of Medicine, Albany Medical College, Albany, New York

Andrew Duncan, David Lyon
Department of Clinical Biochemistry, Royal Infirmary Glasgow, United Kingdom

Alan Shenkin
Department of Clinical Chemistry, University of Liverpool, Liverpool, United Kingdom
Introduction to Aluminum (Al)

- Al comprises 8% of Earth's crust
 - contaminates food, water, and extracted minerals

- Healthy adults ingest ~3-5 mg Al/day, but only absorb ~15 µg/day (gastrointestinal barrier)

- A small amount reaches blood, is bound by proteins, and is eventually excreted through the kidneys
Introduction to Aluminum (Al)

• Al toxicity can occur if:
 – renal excretion is impaired (uremic, dialysis patients)
 – gastrointestinal barrier is bypassed (parenteral nutrition)

• Al toxicity can occur in:
 – bones (osteomalacia, fractures)
 – brain (premature dementia, seizures, death)
Aluminum in PN Patients

• Al toxicity associated with PN use well known since the early 1980's (adults and infants)
 – Al accumulation at mineralization front in bone
 – Impaired bone – mineral uptake (calcium)
 – Reduced bone formation

 – Bone pain (long bones, weight-bearing joints)
 – Osteomalacia
History of Aluminum Contamination in PN Solutions

- 1970’s: Switch from casein/fibrin hydrolysates to crystalline amino acids
- 1986: FDA recommends elimination of Al from ingredients used in PN solutions
- 1991: "Safe" level of Al administration through PN is
 \[< 2 \, \mu g \, Al/kg \, body \, weight/day\]
- 2004: FDA regulations
 - LVPs contain \(< 25 \, \mu g/L\)
 - SVPs are labeled with maximum Al concentrations at expiration
 - 'Warnings' section for toxicity of Al \(> 5 \, \mu g/kg/day\)
Measuring Aluminum in Bone

- Vertebrae or long bone samples from 7 long term PN patients collected at autopsy
- Control samples ($n = 18$) obtained from hip or knee replacement patients

- At least 2 cm x 2 cm in size
- Placed in acid-washed/Al-free plastic containers
- Stored in a -70°C freezer until analysis

- Clinical patient information also collected
Bone Preparation

1. Clean with H$_2$O$_2$
2. De-fat with diethyl ether
3. Freeze-dry
4. Section with Diamond Disc saw
5. Digest with HNO$_3$ in microwave
Bone Analysis

Graphite Furnace Atomic Absorption Spectrometry

light energy + ground state Al atom → excited state Al atom
<table>
<thead>
<tr>
<th>Patient #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis leading to SBS</td>
<td>Bowel Ischemia</td>
<td>Bowel Ischemia</td>
<td>Bowel Ischemia</td>
<td>Bowel Ischemia</td>
<td>Crohn's Disease</td>
<td>Crohn's Disease</td>
<td>Crohn's Disease</td>
</tr>
<tr>
<td>Remaining bowel</td>
<td>duodenum + ½ colon</td>
<td>80 cm jejunum + ¾ colon</td>
<td>80 cm jejunum + ½ colon</td>
<td>55 cm jejunum + ½ colon</td>
<td>110 cm jejunum, no colon</td>
<td>80 cm jejunum, no colon</td>
<td>80 cm jejunum, no colon</td>
</tr>
<tr>
<td>Years on PN</td>
<td>2</td>
<td>10</td>
<td>12</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Other disorders</td>
<td>kidney failure, dialysis 18 mos.</td>
<td>recurrent catheter sepsis, osteomyelitis</td>
<td>chronic renal disease</td>
<td>HTN</td>
<td>kidney failure, dialysis 8 mos.</td>
<td>cirrhosis, HepC+</td>
<td></td>
</tr>
</tbody>
</table>

CHF = congestive heart failure; HepC+ = hepatitis C positive; HTN = hypertension

Howard et al., JPEN 2007; 31(5): 388-396
Bone Aluminum Results

Bone Al (µg/g)

Error bars = standard deviation

Ref pop

Controls (C) n = 18

years on PN

†Reference population (Tang et al. 1999. Biol Trace Elem Res; 68, 267-279)
Bone Samples

PN patient samples

Control samples
Where do we go from here?
Continuing Problems

• Where is Al still present?
 – PN additives: multivitamins, trace elements, Ca, Mg, and phosphate salts, heparin, albumin
 • contamination of PN solutions with Al is variable and unpredictable
 – other sources of Al?

• How can we reduce Al exposure?
 – use plastic containers for PN ingredients
 – replace Al-rich components ($C_{12}H_{22}CaO_{14}$ with $CaCl_2$ salts, K_3PO_4 with Na_3PO_4 salts)
Where do we go from here?
Monitoring PN Patient Bone Health

• Predictors of excess bone Al accumulation?
 – urine, plasma, serum, blood Al content
 – serum Al – deferoxamine (Al chelator) infusion test
 – iron status – anemia may cause easier Al absorption

• \textit{In vivo} neutron activation analysis in hand bone

• Other trace elements in bone
Acknowledgements

The Oley Foundation

Creighton University Osteoporosis Research Center
• Robert R. Recker, M.D.

Clinical Trace Elements Laboratory (NYS DOH)
• Aubrey Galusha
• Michelle Morrissette