From Fever to Septic Shock

- **SIRS**
 - Sepsis
 - Severe Sepsis
 - Septic Shock
 - Hypotension

- **Temperature**: 98°F ± 2°F (normal)
 - Fever: above 100°F

Etiology of Fever

- Normal human physiologic temperature ranges above and below mean of ~98°F (controversial)
- Temperature above 99.5°F considered fever (also controversial)
- Majority of research to date does not support harm from febrile state.
 - Three main exceptions:
 - Fever d/t heat stroke
 - Fever causing extreme metabolic demands in pts with underlying cardiac and pulmonary disorders
 - Fever in elderly prone to mental dysfunction
- Research to date and various guidelines:
 - Recommend only suppressing fever to provide patient comfort
 - Find an increase in viral shedding and prolonged disease states with Aspirin and Tylenol use

Fever

- Most common reasons for fever include:
 - Infection (to a greater extent bacterial)
 - Malignancies
 - Connective tissue/autoimmune diseases
- Other not as common reasons:
 - Post operative
 - Drugs/Medications
 - Undiagnosed illnesses
- Other factors that can cause fever:
 - Tachycardia, diurnal patterns, ovulation, exercise, digestion, trauma, psychological distress/disorders, infarction, burns, renal failure and shock, burns, tissue infarction, childbirth

Etiology of Fever

- Most common reasons for fever include:
 - Infection (to a greater extent bacterial)
 - Malignancies
 - Connective tissue/autoimmune diseases
- Other not as common reasons:
 - Post operative
 - Drugs/Medications
 - Undiagnosed illnesses
- Other factors that can cause fever:
 - Tachycardia, diurnal patterns, ovulation, exercise, digestion, trauma, psychological distress/disorders, infarction, burns, renal failure and shock, burns, tissue infarction, childbirth
Pyrogens

- **Exogenous pyrogens:**
 - Microorganisms and toxins or other products of microbial origin, which induce mainly macrophages to produce endogenous pyrogens
- **Endogenous pyrogens:**
 - Cytokines (mainly IL-1, IL-6, TNF-alpha, interferon and prostaglandins)
 - Antigen-antibody complexes associated with complement
 - Lymphocyte derived molecules
 - Bile acids
 - Androgenic steroid metabolites (natural and synthetic)

Fever in SOAP

- **Exam:**
 - PMH
 - Medication review
 - Recent travel, exposure to pets and other animals, other exposure
 - Family hx: rare hereditary causes of fever
 - Verify fever: no research support for best location to verify (in adults)
 - Pattern: continuous, relapsing, etc...
- **Lab tests to consider:** CBC with differential, CMP. UA C&S, CXR, ECG, ESR/CRP, ANA, Monospot, TB skin test, HIV, Hep panels
- **Other imaging per exam findings or index of suspicion**
Systemic Inflammatory Response Syndrome (SIRS)

• The systemic response to a wide range of stresses
• Two or more of the following:
 – Temp: >38°C
 – HR: >90
 – RR: >20
 – PaCO2: <32
 – WBC: >12K or <4K or >10% bands

SIRS Differential Diagnosis

• Infection
• Malignant hyperthermia and heat stroke
• Burns
• Trauma
• Pulmonary embolism
• MI
• Cardiac tamponade
• Dissecting or ruptured aortic aneurysm
• Occult hemorrhage
• Adrenal insufficiency
• Thyroid storm
• Pancreatitis
• Drug overdose
• Drug hypersensitivity reactions

Other Sepsis Diagnostic Criteria

• Hypothermia <36C
• AMS
• Significant edema or + fluid balance
• Hyperglycemia >140 with DM hx
• Elevated CRP and/or ESR
• Elevated procalcitonin
• Arterial hypotension: <90 SBP, MAP <70
• Arterial hypoxemia: PaO2/FiO2 <300
• Acute oliguria: <0.5 ml/kg/hr for at least 2 hours despite adequate fluid resuscitation
• Creatinine >0.5 mg/dL
• Coagulation abnormalities: INR >1.5 or aPTT >60
• Ileus
• Thrombocytopenia: plt <100K
• Hyperbilirubinemia: TB >4
• Decreased capillary refill and/or mottling
• Lactic acid >2 mmol/L

Elevated Lactic Acid Levels

• Hyperlactatemia: >2
• Lactic acidosis: >4
• Two types
 – Type A (tissue hypoxemia)
 • Hypovolemia
 – Shock
 – Type B (without widespread tissue hypoxemia)
 • DKA
 • SaO2
 • Catecholamine release: exogenous or endogenous
 • Malignancy
 • ETOHism
 • Drugs:
 – HAART
 – Propofol
 – Linezolid
 • Mitochondrial disorders
Sepsis

• Sepsis is the presence of infection together with systemic manifestations of infection
• Apart from leukopenia and hypothermia, sepsis can be a normal manifestation of the body’s immune response and does not necessarily signify a resulting poor prognosis
• The term septic is an informal term for severe sepsis or septic shock
• Bacteremia:
 — Culturable bacteria in the bloodstream
 — May be transient and inconsequential
 — Inconsistent correlation with severe sepsis

Sepsis

• Leading cause of infectious death in U.S.
• Costs ~25 billion in hospital management
• ~20-60% mortality rate in ~750K cases in US annually
• >60% of these patients >65 years old
• ½ Gram +s, ½ Gram (-) s, Candida
• Foci of infection:
 — #1 Lungs
 — #2 “Urine”
• 100-300X greater for HD patients

Severe Sepsis

<table>
<thead>
<tr>
<th>TABLE 1. Severe Sepsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sepsis definition—sepsis-induced tissue hypoperfusion or organ dysfunction (any of the following thought to be due to the infection):</td>
</tr>
<tr>
<td>Severe respiratory failure</td>
</tr>
<tr>
<td>Lactic acid upper limit of laboratory normal</td>
</tr>
<tr>
<td>Urine output <0.5 ml/kg/hr for more than 2 hrs despite adequate fluid resuscitation</td>
</tr>
<tr>
<td>Acute lung injury with P/F ratio < 200 is the absence of pneumonia as infection source</td>
</tr>
<tr>
<td>Acute lung injury with P/F ratio < 200 is the presence of pneumonia as infection source</td>
</tr>
<tr>
<td>Creatinine >2 mg/dl (178 umol/L)</td>
</tr>
<tr>
<td>Bilirubin >3 mg/dl (51.3 umol/L)</td>
</tr>
<tr>
<td>Thrombocytopenia <100,000/mL</td>
</tr>
<tr>
<td>C-reactive protein (International normalized ratio > 1.5)</td>
</tr>
</tbody>
</table>

Severe Sepsis

• Most common sites for primary infection in patients with severe sepsis are the lungs and the abdomen
• The most influential factors for progressing to severe sepsis/shock are:
 • Surface area of infection
 • Severity
 • Susceptibility to treatment
Septic Shock

• Sepsis with hypotension despite adequate fluid resuscitation with no other underlying etiology
• Hypotension: <90 systolic, <70 MAP, or >40 change from baseline
• Tachyphylaxis to catecholamines, corticosteroids and aldosterone
• Increasing lactate and H+, hyperphosphatemia
• Further depletion of ATP stores, resulting in ion pump dysfunction: intracellular decrease in K and increase in Na and Ca, leading to cellular swelling, immense ROS activity, cessation of protein synthesis, then apoptosis

PRRs, PAMPs & DAMPs

PAMPs

• LPS
• Other lipoproteins
• Peptidoglycans
• Zymosan (yeast)
• Viral coat proteins
• Bacterial flagellin
• Nucleic acids

* Small subset of variety of PAMPs represented. When binding with PRRs create inflammatory cascade via release of chemical mediators (cytokines)

Cell Signaling Molecules

http://chamberlin.med.upenn.edu/412/356/356_files/slides/mammalian_toll-like_receptors.ppt
Cell Signaling Molecules

- Cytokines:
 - Either inflammatory or inflammatory
 - Interleukins (ILs)
 - Interferons
 - Chemokines

- Histamine:
 - Vasodilation of microcirculation (capillary beds, arterioles, venules) and vasoconstriction of large vessels

- Leukotrienes:
 - Act similar to histamine

- Prostaglandins:
 - Lipids derived from cyclooxygenases (COX 1, 2)
 - Moderate contraction of smooth muscles
 - Regulate inflammation

 acute Phase Response

- The three characteristic changes in the microcirculation (arterioles, venules and capillaries) include:
 - Blood vessel dilation, increased vascular permeability and white blood cell migration to localized site of innate immune detection (leukocytosis)

- Pain: afferent signals along nociceptive neural pathways

- Fever: IL-1, IL-6, TNF-alpha, interferon and prostaglandins acting as pyrogens:
 - Alter temperature set point, and stimulate liver to synthesize bulk of initial inflammatory response proteins

- C-reactive protein:
 - Increases activity of phagocytes and facilitates the delivery of humoral (antibodies) and cellular components (T and B cells) to sites of inflammation.

- Anti-inflammatory:
 - Same mechanisms causing white blood cell proliferation to infected or injured tissue also can limit ability to adhere and enter un-inflamed vascular endothelium

 - Other responses that minimize inflammation include:
 - Release of neuroendocrine hormones: cortisol, epinephrine and antioxidants

- Metabolic changes:
 - Increased TSH, vasopressin, insulin, glucagon, catabolism of muscle protein

 - Also:
 - Norepinephrine
 - Hepatic lipogenesis
 - Lipolysis in adipose tissue
Acute Phase Response

- **Constitutional**: fever, wt. loss, night sweats, chills, rigors, myalgias, arthralgias, sleep, appetite, pain, lethargy
- **HEENT**: headache, photophobia, ear congestion/drainage, diplopia, conjunctivitis, rhinitis, hoarseness, pharyngitis, lymphadenopathy
- **Cardio**: chest pain (pleuritic), palpitations, edema
- **Pulm**: dyspnea, cough (+/- productive)
- **GI**: N/V, diarrhea, hematochezia, suppurative discharge
- **GU**: dysuria, frequency, urgency, void volume, incontinence, posterior/flank pain
- **MS**: ROM, coordination, ataxia, muscle weakness
- **Neuro**: impaired mentation/consciousness, seizure, vertigo, sensation, CN impairment
- **Skin**: rash/lesions, urticaria, erythema
- **Psych**: depression, anxiety, mood lability

Pathophysiology of Severe Sepsis

- Abnormal function in microcirculatory units (arterioles, venules and capillary beds)
- Diminished access to O2 for aerobic respiration, this diminishes the ATP needed for life
- Multi-organ failure is a system-wide organ “hibernation”
- Mismatched ratio of pro-inflammatory to anti-inflammatory cytokines
- Desensitization of phagocytes to complement
- Alteration of coagulation cascades:
 - Increased tissue factors and Von Willibrand factor from increasing cellular debris and damaged endothelial tissue
 - Increased activation of platelets
 - Formation of microthrombi, leading to disseminated intravascular coagulation

Microbial Triggers for Severe Sepsis/Shock

- Majority of severe sepsis is associated with commensal bacterial and fungi
 - Enteric gram negative bacilli, coagulase negative staphylococci, enterococci, and Candida sp.
- Culture positive and culture negative cases have similar morbidity and mortality*
- Bacterial endotoxins:
 - Scant evidence these play large role in severe sepsis but they still cause significant cellular damage to areas of localized extravascular tissue
- Superantigens (toxic shock syndrome toxins):
 - Bind to broad range of TLRs via MHCII, resulting in excessive cytokines and other acute phase chemical mediators
 - *S. aureus, S. pyogenes, C. perfringens, V. vulnificus, filoviridae*
Severe Sepsis/Septic Shock Manifestations:

Nervous and Endocrine Systems

- Alterations in higher cerebral function are often early manifestations of severe sepsis, particularly in older adults
- Focal neurological signs: seizures and cranial nerve palsies are rare
- Hypothalamic-pituitary adrenal axis:
 - Blunted release of growth hormone, ACTH, prolactin
- Adrenal insufficiency:
 - Cytokine induced dysfunction, glucocorticoid tachyphylaxis, prolonged inflammatory states, hypoglycemia
- Autonomic dysfunction:
 - Abnormalities in heart rate d/t alterations in sympathetic output or tachyphylaxis

Bloodstream

- Neutrophilic leukocytosis is the normal response to bacterial or fungal infection
- Lymphocytosis in viral infections
- Thrombocytopenia
- Plasma lipids: increase in triglycerides, free fatty acid and vLDL
- Glucose: initial hyperglycemia but can progress to hypoglycemia
- Lactic acid
- Clotting:
 - DIC in ~50% of individuals with severe sepsis
 - CBC with diff and peripheral smear, aPTT/PT, D-dimer, fibrinogen

Lungs

- Hyperventilation with respiratory alkalosis is one of the earliest manifestations of sepsis
- ALI (acute lung injury): PaO2/Fio2=<300
- ARDS (acute respiratory distress syndrome): bilat. pulm. infiltrates w/o HF or PNA with PaO2/Fio2=<200
- Diffuse alveolar epithelial injury leading to fluid spilling into interstitial and airspace compartments
- Neutrophils and monocytes aggregating in pulmonary vessels
- Pulmonary shunting
- Dead space volume increases and compliance decreases
- Intubation and mechanical ventilation

GI Tract

- Increased translocation of bacteria into the lymph system and bloodstream
- Aspiration of microbial contents into the tracheobronchial tree
- Small erosions of the gastric and duodenal mucosa which results in upper GI bleeding and ileus
Severe Sepsis/Septic Shock Manifestations:

Kidneys
- From minimal proteinuria to profound renal failure
- Oliguria
- Azotemia
- Uremia

Liver
- Cholestatic jaundice
- Complete hepatic failure is rare

Immunity
- Immune dysfunction:
 - High susceptibility to nosocomial infections and commensal infections
 - Reactivation of latent herpes simplex and CMV occurs in ~40% of severe sepsis patients

Skin
- Localized: pustules, cellulitis, eschar
- Seeding infections: pustules, cellulitis, petechiae
- Diffuse eruptions:
 - Bacterial toxins-hemorrhagic lesions
 - DIC associated peripheral gangrene-necrotic lesions
Surviving Sepsis

SURVIVING SEPSIS CAMPAIGN BUNDLES

TO BE COMPLETED WITHIN 3 HOURS:
1) Measure lactate levels
2) Obtain blood cultures prior to administration of antibiotics
3) Administer broad spectrum antibiotics
4) Administer 30 mL/kg crystalloid for hypotension or lactate ≥4 mmol/L

TO BE COMPLETED WITHIN 8 HOURS:
5) Apply vasopressors (for hypotension that does not respond to initial fluid resuscitation) to maintain a mean arterial pressure (MAP) ≥65 mm Hg
6) In the event of persistent arterial hypotension despite volume resuscitation (septic shock) or initial lactate ≥4 mmol/L (98 mg/dL):
 - Measure central venous pressure (CVP)
 - Measure central venous oxygen saturation (Svo₂)
7) Remeasure lactate if initial lactate was elevated*

*Targets for quantitative resuscitation included in the guidelines are CVP of ≥8 mm Hg, Svo₂ of ≥70%, and normalization of lactate.

Continuing Sepsis Treatment

- De-escalate antibiotics: targeting both purported species and sensitivity
- Procalcitonin
- Use of crystalloids for fluid resuscitation, albumin where substantial crystalloids are needed
- Vasopressors:
 - Norepinephrine as first choice (dopamine as alternative only in highly selected patients)
 - Epinephrine as second add on or second choice
 - Vasopressin next
 - No low dose dopamine for renal protection
- Inotropic therapy:
 - Trial dose of dobutamine with signs of myocardial dysfunction: elevated cardiac filling pressures, low cardiac output
 - In some patients, hydrocortisone

Surviving Sepsis

- Obtain blood cultures x2 (aerobic and anaerobic) before administration of antimicrobial therapy if does not delay treatment for >45 minutes
- Draw cultures percutaneously and from each vascular access if not placed 48 hours prior to contact
- Cultures from urine, CSF, wounds, respiratory secretions, etc
- The administration of broad-spectrum antimicrobials within 1 hour in patients with severe sepsis and septic shock
- Source control: necrotizing soft tissue infections, peritonitis, cholangitis, intestinal infarction, intravascular access devices, etc with appropriate rapid consultation

Continuing Sepsis Treatment

- Tight glucose control
- PRBC infusion only when Hgb is below 7g/dL
- Platelets only when <10K without bleeding and <20K with active bleeding
- Continuous or intermittent hemodialysis
- Intubation and mechanical ventilation management
- Enteric nutrition
- Stress ulcer prophylaxis
- DVT prophylaxis
- Decubitus ulcer prophylaxis
Sepsis Workup

- CBC with differential, CMP, Mg, Phos., Ionized Ca
- Lactic acid (q 2 until <2)
- Procalcitonin
- ABG
- Coag. Panel, fibrinogen
- CXR, UA, BCs (PCR), Resp. Cx and gram stain (PCR)
- Legionella Ag, S. pneumoniae Ag
- C. diff. PCR
- Influenza A&B PCR

Procalcitonin (PCT)

- Usual course=cleavage into calcitonin in thyroid
- Extrathyroidal non-neuroendocrine cleavage= mainly with increased concentrations during bacterial infection but *
- DAMPs + PAMPs= increase in levels
- Sepsis vs. SIRS of noninfectious origin: Lungs and GI
- Levels peak at 6 hours, plateau at ~8-24 hours, can remain elevated for days-weeks after infection
- Different baseline and infection driven PCT levels for CKD patients

![Procalcitonin (PCT) diagram](image1.png)

![Procalcitonin (PCT) diagram](image2.png)
Multiplex PCR

- 1-2 days with BCs vs hours with PCR
- Amplifies DNA of large spectrum of infectious bacteria
- Decreased treatment of contaminants
- Earlier administration of directed ABXs or de-escalation of ABXs
- Minimized resistance
- ~25% reduction of # of broad spectrum days

Antibiotic Resistance

Anti-infective Therapy

- Identification of the infecting organism:
 - Cultures, immunologic assays and molecular testing (PCR) before starting drug therapy
- In most cases, offending agent will never be found:
 - Aim for most probable offending agents:
 - Cellulitis in non-immunocompromised individual (S. aureus, S. pyogenes)
 - Acute otitis media in young child (viral vs. H. influenzae, S. pneumoniae, M. catarrhalis)
- Host factors:
 - Hx of previous adverse reactions to antimicrobial agents
 - Gastric pH: absorption increases or decreases depending on pH and drug
 - Renal function:
 - Decreased in very young children and older adults
 - Most important route of elimination for antimicrobial products: adjustment needed renal function for and adequate dosing
Anti-infective Therapy

- Hepatic function: watch out for azithromycin, Zosyn, clindamycin, metronidazole, fluconazole, nitrofurantoin, isoniazid
- G6PD (glucose-6-phosphate dehydrogenase deficiency): hemolytic reactions to nitrofurantoin and Bactrim
- DMII: hypoglycemic reactions to Bactrim
- Pregnancy: increased clearance, no tetracyclines (includes breast-feeding)

- Site of infection: drug to site of infection (penetrance):
 - Bile-concentrated, blood-brain barrier, bone, etc
- Route of administration: oral vs. parenteral
- Removal of foreign material: prosthetics and implants

Gram + Aerobic Cocci

Gram + aerobic cocci:
- Coagulase positive (Staphylococcus aureus)
- Coagulase negative: S. epidermidis and other commensals

Streptococcus:
Lancefield antigen and hemolytic reaction
- S. pyogenes (strept throat and necrotizing fasciitis)
- S. pneumoniae
- S. Agalactiae
- Viridans streptococci (usually contaminants, commensals)

Treatment: Penicillins (all types), Cephalosporins, Clindamycin, Vancomycin, Daptomycin, Linezolid, Orbtaciv (oritavancin), Sivextro (tedizolid), Dalvance (dalbavancin)
Gram + Aerobic Bacilli (Rods)
- Listeria monocytogenes
- Bacillus anthracis

Gram + Anaerobic Bacilli (spore forming)
- Clostridium tetani
- C. botulinum
- C. perfringens
- C. difficile

Other Gram +
- Enterococcus faecalis
- E. faecium

Gram (-) Aerobic Cocci
- Neisseria meningitidis
- N. gonorrhoeae
- Moraxella catarrhalis
Gram (-) Aerobic Bacilli:

- Vibrio cholerae
- V. vulnificus
- H. pylori
- Pseudomonas aeruginosa

Gram (-) Aerobic Bacilli: Enterobacteriaceae

- E. coli
- Klebsiella
- Citrobacter
- Enterobacter
- Morganella
- Proteus
- Salmonella
- Yersinia pestis

Other Gram (-)

Haemophilus influenzae infections

- H. Influenzae
- Legionella pneumophila
- Captocytophaga canimorsus

Spirochetes

- Syphilis (Treponema pallidum)
- Lyme disease (B. burgdorferi)
Antibacterials

- **Lungs**
 - Non-Pseudomonas
 - Rocephin + Azithromycin
 - Levaquin
 - Pseudomonas
 - Cefepime or Aztreonam + Levaquin or Carbapenem
 - Pseudomonas + MRSA Risk
 - Cefepime or Aztreonam + Levaquin or Carbapenem + Vancomycin
- **Meningitis**
 - Rocephin or ID consult + Vancomycin
- **Intra-abdominal**
 - Zosyn or Levaquin or Flagyl

Antibacterials

- **Skin**
 - Vancomycin + Clindamycin + Zosyn or Aztreonam
- **Line sepsis**
 - Vancomycin + Cefepime or Levaquin
- **Urine**
 - Cefepime or Aztreonam + Levaquin
- **Neutropenic fevers**
 - Vancomycin + Cefepime or Aztreonam or Levaquin
Antibacterials

Zosyn:
- Coag. abnormalities
- Thrombocytopenia
- Jarisch-Herxheimer reaction
- Seizures (renal failure)

Levaquin:
- QT prolongation
- Caution with electrolyte abnormalities
- Hypoglycemia
- Tendon rupture
- Caution in Sz d/o

Antifungals

- Azoles (voriconazole, etc)
- Echinocandins (caspofungin, micafungin)
- Amphotericin B
- Bactrim

Antivirals

- Acyclovir

Reactivation
- HSV
- CMV
- EBV
- Hepatitis B
Fluid Resuscitation

- +Fluid balance → steady state fluid balance → (-) fluid balance
- CHF and CKD
- Crystalloids
 - 30ml/kg bolus
 - maintenance fluids
 - NS vs LR
- Colloids
 - Albumin (no definitive answer from research)
 - Starches=AKI

Corticosteroids

- Greater dendritic cell response= greater magnitude and time of sepsis presentation
- Glucocorticoids mute dendritic cell response
- During sepsis increased chemical mediator concentrations=blunted adrenal corticosteroid production
- Addition of exogenous corticosteroids decreases magnitude and truncates length of presentation but increases risk of recurrent infection
- Hydrocortisone

Sodium Bicarbonate

- No current research supported recommendations but in practice
- Indicated for ESRD or renal tubular acidosis patients with concurrent sepsis
- pH < 7.2
- Issues
 - Na overload thus fluid overload also
 - Increases lactate and pCO2 levels
 - Decreases ionized Ca levels which results in decreased CO

Dysglycemia and Sepsis

- Hyperglycemic variability s/t proinflammatory mediators (cortisol, catecholamines, cytokines)
- Prothrombotic effects
- Decreased endothelial vascular reactivity
- Decreased function of neutrophils
- Insulin gtt-short acting
 - Goal BG 140-180
Metabolism and Sepsis

- Net catabolic state
 - Decreased carbs, protein, and lipids
- Anorexia
- Encephalopathy
- Mechanical ventilation
- ~6 day delay in nutritional supplementation
 - Enteral first!

<table>
<thead>
<tr>
<th>Table 1: Summary of major metabolic changes in sepsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiologic Change in Sepsis</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Gluconeogenesis, Hyperglycemia glycosis</td>
</tr>
<tr>
<td>Protein catabolism</td>
</tr>
<tr>
<td>Lipolysis</td>
</tr>
<tr>
<td>Micronutrients</td>
</tr>
<tr>
<td>Neuroendocrine activation</td>
</tr>
<tr>
<td>Cortisol</td>
</tr>
<tr>
<td>Catecholamine release</td>
</tr>
<tr>
<td>Cytokine release</td>
</tr>
<tr>
<td>Impaired oxygen utilization</td>
</tr>
</tbody>
</table>

ETOH use and sepsis

- Associated with CAP
 - Extended duration of febrile state
 - Increased length of hospital stay
 - Increased likelihood of empyema and ARDS
- Minimizes immune function
 - Neutrophil and Macrophage activity
- Increased proinflammatory cytokines
- Increased intestinal permeability and bacterial translocation
- Decreased cilia and surfactant function
- Increases risk of aspiration
- Poor dental hygiene
- Minimizes cough reflex
- Malnutrition

References

Abou-Dagher, Gilbert et al. (2015). Sepsis in hemodialysis patients. BMC Emergency Medicine, 15 (30)

Brendler, Nicole, Haberman, Tolia, Kurniawan, Chadi, and Butk, Charles, ElWOOD (2016). Procalcitonin to guide antibiotic therapy in the ICU. International Journal of Antimicrobial Agents, 46, 159-164

Burgert, Joshua and Rogers, Angela. (2016). Metabolism, metabolomics and nutritional support of patients with sepsis. Clinics in Chest Medicine

Mandell, Gerald, Bennett, John, and Dolin, Raphael. Principles and Practice of Infectious Diseases, 7th Ed

References

Robinson, Richard. (2015). Glucocorticoids reduce sepsis by diminishing dendritic cell response. PLOS Biology, DOI:10.1371/journal.pbio.1002270

http://www.survivingsepsis.org/Guidelines/Pages/default.aspx

CDC

IDSA

WHO