Meningeal afferent signaling and the pathophysiology of migraine

Greg Dussor, PhD
Behavioral and Brain Sciences
UT Dallas
Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Mean rank (95% UI)</th>
<th>% change (95% UI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Low back pain</td>
<td>1.1 (1.0 to 1.2)</td>
<td>43 (34 to 53)</td>
</tr>
<tr>
<td>2 Major depressive disorder</td>
<td>1.0 (1.0 to 1.3)</td>
<td>37 (25 to 50)</td>
</tr>
<tr>
<td>3 Iron-deficiency anaemia</td>
<td>3.3 (2.7 to 4.0)</td>
<td>-1 (-3 to 2)</td>
</tr>
<tr>
<td>4 Neck pain</td>
<td>4.3 (3.7 to 4.8)</td>
<td>41 (28 to 55)</td>
</tr>
<tr>
<td>5 COPD</td>
<td>5.8 (5.3 to 6.4)</td>
<td>46 (32 to 62)</td>
</tr>
<tr>
<td>6 Other musculoskeletal disorders</td>
<td>5.8 (4.7 to 6.9)</td>
<td>45 (38 to 51)</td>
</tr>
<tr>
<td>7 Anxiety disorders</td>
<td>6.4 (4.9 to 7.9)</td>
<td>37 (25 to 50)</td>
</tr>
<tr>
<td>8 Migraine</td>
<td>8.9 (6.5 to 11.3)</td>
<td>40 (31 to 51)</td>
</tr>
<tr>
<td>9 Diabetes</td>
<td>9.1 (6.5 to 13)</td>
<td>68 (56 to 81)</td>
</tr>
<tr>
<td>10 Falls</td>
<td>10.1 (7.4 to 13)</td>
<td>46 (30 to 64)</td>
</tr>
<tr>
<td>11 Osteoarthritis</td>
<td>12.3 (9.7 to 15)</td>
<td>64 (50 to 79)</td>
</tr>
<tr>
<td>12 Drug use disorders</td>
<td>17.5 (13 to 22)</td>
<td>40 (27 to 54)</td>
</tr>
<tr>
<td>13 Hearing loss</td>
<td>13.5 (7 to 20)</td>
<td>29 (17 to 38)</td>
</tr>
<tr>
<td>14 Asthma</td>
<td>15.3 (10 to 20)</td>
<td>28 (21 to 34)</td>
</tr>
<tr>
<td>15 Alcohol use disorders</td>
<td>15.8 (12 to 21)</td>
<td>32 (15 to 50)</td>
</tr>
<tr>
<td>16 Schizophrenia</td>
<td>16.0 (9 to 22)</td>
<td>48 (37 to 60)</td>
</tr>
<tr>
<td>17 Road injury</td>
<td>16.1 (12 to 20)</td>
<td>30 (13 to 49)</td>
</tr>
<tr>
<td>18 Bipolar disorder</td>
<td>16.6 (9 to 23)</td>
<td>41 (31 to 51)</td>
</tr>
<tr>
<td>19 Dysthymia</td>
<td>18.6 (13 to 26)</td>
<td>41 (34 to 48)</td>
</tr>
<tr>
<td>20 Epilepsy</td>
<td>21.8 (18 to 27)</td>
<td>36 (27 to 47)</td>
</tr>
<tr>
<td>21 Ichaemic heart disease</td>
<td>21.8 (17 to 29)</td>
<td>48 (37 to 57)</td>
</tr>
<tr>
<td>22 Encephalopathy</td>
<td>22.5 (15 to 35)</td>
<td>79 (19 to 39)</td>
</tr>
<tr>
<td>23 Diarrhoea</td>
<td>23.1 (16 to 30)</td>
<td>5 (1 to 11)</td>
</tr>
<tr>
<td>24 Alzheimer’s disease</td>
<td>25.9 (21 to 33)</td>
<td>90 (110 to 88)</td>
</tr>
<tr>
<td>25 BPH</td>
<td>26.3 (20 to 35)</td>
<td>84 (48 to 120)</td>
</tr>
<tr>
<td>26 Tuberculosis</td>
<td>27.0 (20 to 35)</td>
<td></td>
</tr>
</tbody>
</table>

(Continues on next page)
Migraine is 2-3 times more common in females

Ferrari et al 2015
Characteristics of Migraine

Before an attack
- Yawning
- Fatigue
- Food cravings
- Drowsiness or depression
- Irritability or tension
- Occurs 24-48 h before attack

During an attack
- Nausea, vomiting
- Sweating or cold hands
- Sensitivity to light and sound
- Scalp tenderness or extracephalic allodynia
- Throbbing, unilateral pain
- Can last from 4-72 h

After an attack
- “Hungover”
- Weakness
- Tiredness
- Mood changes
- Can last for hours to days after attack is over
What is the source of migraine pain?

- The simplest explanation for the head-specific pain of migraine is that trigeminovascular-mediated afferent input is necessary.

- It has been known for over 70 years that the meninges are sensitive to chemical and mechanical stimuli.

- What are the mechanisms by which meningeal afferents respond to these stimuli and what happens in the meninges to initiate nociception?
Modeling Headache in a Rodent

Day 0:
- Surgery
- Recovery

Day 7:
- Dura Injection
 - Allodynia Testing

1h, 5h

Diagram:
- Dummy Cannula
- Cannula
- Skull
- Dura
- Brain
Interleukin 6 (IL-6)

- Released from numerous cell types
- Contributes to a variety of inflammatory pain conditions

- IL-6 can be produced from a variety of cells (dural mast cells, meningeal macrophages, dural fibroblasts)

- **IL-6 levels are elevated in migraine patients** (Fidan et al 2006; Sarchielli et al 2006; Kocer et al 2009; Uzar et al 2011).

- **IL-6 mRNA elevated in the cranial periosteum of chronic migraine patients** (Perry et al 2016).
Prior exposure to IL-6 sensitizes dural afferents to moderate pH changes.
Dural IL-6 sensitizes both males and females

Facial Withdrawal Threshold (g)

Time (h)

IL-6 .1 ng Female
Vehicle Female
IL-6 .1 ng Male
Vehicle Male

pH 7.0
Hindpaw IL-6 does not sensitize hindpaws to pH 7.0
IL-6 primes dural afferents to subthreshold stimuli

How and where does sensitization occur?
Central Projections of Trigeminal Neurons
Peripheral levels of BDNF and NGF in primary headaches

F Blandini1, L Rinaldi3, C Tassorelli2, G Sances2, M Motta3, A Samuele1, R Fancellu1,4, G Nappi2,5 & A Leon3

1Laboratory of Functional Neurochemistry and 2Headache Centre, Neurological Institute 'C. Mondino', Pavia, 3Research & Innovation (R&I) Company, Padova, 4University of Insubria, Varese, and 5Department of Neurology and Otorhinolaryngology, University of Rome 'La Sapienza', Rome, Italy

DOI 10.1007/s10194-010-0233-0

Cephalalgia

RAPID COMMUNICATION

Increased serum levels of brain-derived neurotropic factor during migraine attacks: a pilot study

Marco Túlio A. Tanure · Rodrigo S. Gomez · Rubens Carlos L. Hurtado · Antônio L. Teixeira · Renan Barros Domingues

DOI 10.1007/s10194-012-0454-5

ORIGINAL

Brain-derived neurotrophic factor in primary headaches

Marlene Fischer · Georg Wille · Stephanie Klien · Hind Shanib · Dagny Holle · Charly Gaul · Gregor Broessner
Does BDNF contribute to priming?

ANA-12 (BDNF receptor antagonist) 24 hours after IL-6 Systemic injection
Does brainstem BDNF contribute to priming?

TrkB/FC (BDNF sequestering agent) 24 hours after IL-6
TrkB/FC given into the cisterna magna

![Graph showing the effect of TrkB/FC on facial withdrawal threshold over time.
IL-6/Vehicle group compared to IL-6/TrkBfc group.](image-url)
Does brainstem BDNF contribute to priming?

TrkB/FC (BDNF sequestering agent) 24 hours after IL-6
TrkB/FC given into the cisterna magna

Male

Female

Facial Withdrawal Threshold (g)

Time (h)

72 hr BL 3 hr 24 hr 48 hr

- IL-6/Vehicle/pH 7.0
- IL-6/TrkBfc/pH 7.0

Facial Withdrawal Threshold (g)

Time (h)

72 hr BL 3 hr 24 hr 48 hr

- IL-6/Vehicle/pH 7.0
- IL-6/TrkBfc/pH 7.0
Does intracisternal BDNF prime to moderate pH?

1 pg BDNF administered directly into the cisterna magna. pH 7.0 applied to the dura at 72 hours.

BDNF given into the cisterna magna mimics IL-6 on the dura.
1 pg BDNF administered directly into the cisterna magna. Sodium nitroprusside (SNP, 3 mg/kg) given IP at day 16.

BDNF given into the cisterna magna primes to migraine triggers.
Dural IL-6 sensitizes to systemic NO donors

SNP—sodium nitroprusside, 3 mg/kg
Does intracisternal BDNF prime to systemic NO donors?

1 pg BDNF administered directly into the cisterna magna.
Sodium nitroprusside (SNP, 3 mg/kg) given IP at 72 hours.

BDNF given into the cisterna magna primes to migraine triggers
Summary: The dural afferent system is pH/IL-6 sensitive and primed by input from the meninges and BDNF in the brainstem.

Future Questions:
• What is the mechanism of sensitization?
• What is the origin of BDNF?
• Where is sensitization occurring and how long does it last?
• Do other molecules (e.g. CGRP) contribute to priming?
• Can priming be produced by other stimuli than dural IL-6 or IC BDNF?
• Are there unique BDNF-dependent plasticity mechanisms in pain circuits?
Acknowledgements

Dussor Laboratory
Jin Yan
Xiaomei Wei
Marina Asiedu
Carolina Burgos-Vega
Lilyana Quigley
Shayne Hassler
Galo Mejia
Blaine Jacobs

UTDallas
Ted Price
Price Laboratory Members
Pradipta Ray

Funding
The National Headache Foundation
The Migraine Research Foundation
NIH/NINDS NS072204
Amgen
University of Texas System
UT Dallas