Children With Cochlear Implants: Cognitive and Language Factors Towards Speech Understanding in Noise

Doug Sladen, Ph.D., Mayo Clinic
Rajka Smiljanic, Ph.D., University of Texas at Austin
Rachel Gilbert, Ph.D., University of Texas at Austin

14th Symposium on Cochlear Implants in Children
December 10-13, 2014
Disclaimer

I declare that I have no proprietary interest in any product, instrument, device, service, or material related to this presentation.
The Speech Chain

Top down – cognitive processing impacts how sensory information is decoded

Bottom up – saliency of speech impacts access to linguistic and semantic content

Denes & Pinson, 1993
The problem: speech in noise

• Cochlear implant (CI) users listen through a degraded system (impaired ear, electrical hearing with limited spectral and temporal detail)

• Speech understanding is made worse by noise and reverberation

• Speech in noise understanding is more difficult among young children; auditory development continues through adolescence (Werner, 2007)

• Opportunities for improving speech in noise exist
• **Acoustic enhancements: clear speech**
 - characterized by a wide range of acoustic-articulatory adjustments
 - enhances intelligibility for various listener populations
 - Adults with hearing loss, children with and without learning impairments, low proficiency non-native listeners (Bradlow et al., 2003; Bradlow and Bent 2002, Cassie et al., 2001)
• **Semantic enhancements: highly predictive, contextual information**

 • Children less effective in noise compared to adults (Nittrouer & Boothroyd, 1990; Elliot, 1979)
 • Young children’s limited knowledge

 • Children equally effective as adults when noise levels adjusted (Fallon, Trehub & Schneider, 2002)
 • Comparable gains from context
Goals:

• Word recognition in adverse conditions (noise) for children and adult CI listeners and control groups of children and adults with normal or near normal hearing (NH)

• Do CI children and adults apply similar strategies for listening to speech in noise compared to NH children and adults

• Do these groups use acoustic enhancements, semantic enhancements independently and combined?
• Participants:
 • Production:
 • 2 adults (1 male, 1 female)
 • 60 HP + 60 LP sentences
 • Conversational and clear speaking style
 • Total of 480 sentences
 • Perception
 • 15 children with cochlear implants (7;0 -12;0 years of age)
 • 18 children with normal hearing (6;9 – 12;6 years of age)
• Materials:
 • 120 sentences designed specifically for use with children (Fallon, Trehub & Schneider, 2002)
 • 60 high predictability (HP) sentences spoken in conversational speech, and again in clear speech
 • 60 low predictability (LP) sentences spoken in conversational speech, and again in clear speech
 • HP
 • Mice like to eat cheese.
 • Rain poured from the cloud.
 • LP
 • He looked at the cheese.
 • We pointed at the cloud.
Results: Production

Target word duration

Talker

Female

Male

context
LP
HP

duration (ms)

conv clear conv clear

style

200 400 600 800
Results: Production

Target vowel duration

Talker

Female

Male

context

LP

HP

duration (ms)

style

conv

clear

conv

clear

14th Symposium on Cochlear Implants in Children
December 10-13, 2014
Participants: Experimental Tasks

NH Children (n = 18)

- Hearing thresholds better than 20 dB HL .5-4KHz

CI Children (n = 15)

- 11 cochlear (6 bilateral, 5 bimodal), 4 AB (2 bilateral, 2 bimodal)
- The cochlear children all used ADRO and ASC
- Tested in their preferred listening program
Procedures

1) Cognitive, language testing
 - LEITER-R Performance Scale (non-verbal IQ)
 - Oral Written Language Scale (OWLS)
 - Wide Range Assessment of Memory and Learning (WRAML)
 - Attention subtest
 - Comprehensive Test of Phonological Processing (CTOPP)
 - Phonological awareness
 - Phonological memory
 - Phonological naming

2) Speech in noise testing
 - 240 sentences: blocked by talker, style and context; order of blocks pseudo-random
 - Repeat the final word; recorded by the experimenter
 - Target sentences mixed with spectrally matched noise
 - Noise presented at 60 dB SPL (A)
 - SNR determined individually by adaptive pre-test
Results: Clear Speech

[Graph showing RAU for Plain Low, Plain High, Clear Low, and Clear High categories with CI and NH conditions.]
Cognitive and language tests

<table>
<thead>
<tr>
<th>Test</th>
<th>NH</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receptive</td>
<td>104.6*</td>
<td>92.0 (SD 14.9)</td>
</tr>
<tr>
<td>Expressive</td>
<td>109.5*</td>
<td>97.0 (SD 15.0)</td>
</tr>
<tr>
<td>WRAML</td>
<td>Attention</td>
<td>102.6</td>
</tr>
<tr>
<td>CTOPP</td>
<td>Awareness</td>
<td>103.0*</td>
</tr>
<tr>
<td></td>
<td>Memory</td>
<td>93.3</td>
</tr>
<tr>
<td></td>
<td>Naming</td>
<td>100.8</td>
</tr>
<tr>
<td>LEITER</td>
<td>Non-verbal</td>
<td>104.4</td>
</tr>
</tbody>
</table>
Results: Clear Speech

- Phonological awareness, $p = .04$
- Phonological memory, $p = .009$
- Phonological naming, $p = .02$
- Attention, $p = .04$
Summary

• Children with cochlear implants and children with normal hearing benefit from acoustic enhancement of speech

• Benefits from semantic enhancement are realized in combination with clear speech

• This may demonstrate that improved lower level sensory input allow access to higher order processing