Measuring Sound-Processor Threshold Levels for Pediatric Cochlear Implant Recipients Using Visual Reinforcement Audiometry via Telepractice

Joshua D. Sevier AuD
Sangsook Choi PhD
Michelle L. Hughes PhD

ACIA 2017, San Francisco
Joshua Sevier

• No conflicts to disclose
Introduction

• Why is telepractice needed for CI recipients?

Reason #1: Lots of visits!
Introduction

• Why is telepractice needed for CI recipients?

Reason #2: CI centers (especially pediatric ones) are not on every corner!
Introduction

• Why is telepractice needed for CI recipients?

Reason #2: CI centers are not on every corner!

Omaha: 3 CI centers

7-hr drive
Introduction

Specific to pediatrics:

• Special techniques
 – Conditioned play audiometry (CPA)
 – Visual reinforcement audiometry (VRA)

• Special equipment
 – Toys/games
 – Lighted/animated objects
Introduction

• Previous research:

 – Threshold (T) and upper-comfort (M/C) levels in adults & adolescents are not significantly different between remote and in-person measures.

 (Ramos et al., 2009; McElveen et al., 2010; Wesarg et al., 2010; Hughes et al., 2012; Eikelboom et al., 2014; Kuzovkov et al., 2014)

 – Only one study has been done using CPA

 (Hughes et al., 2017)

 – No study has been done utilizing VRA with this population
Study Goals

• Compare in-person vs. remote behavioral thresholds (T-levels) in young children with Cis via VRA

• Hypothesis: T-levels not significantly different between conditions
VRA Methods

• Goal: 20 pediatric CI recipients
 – Data to Date: 16 recipients
 – Age at Test: 1.1–3.4 y
 – Avg. Duration CI Use: 0.66y (~8m)
 – Devices: 3 Cochlear, 11 Advanced Bionics, 2 MED-EL
Methods

• 2 visits
 – ABBA design (A = in-person, B = remote)
 – Both visits at BTNRH

• T-levels averaged across visits for each condition due to limited hit rate.
VRA Methods

In-Person Condition:

• Audiologist controls programming software
• Child seated to avoid visual cues from computer or audiologist
• Play assistant engages child in behavioral task
• Other outcome measures:
 – Hit Rate
 – Test Time
 – Parent/caregiver questionnaire
VRA Methods

Remote Condition:

- Audiologist remotely controls programming software at recipient site (requires peripheral hardware at recipient site)
- Child seated to avoid visual cues from videoconferencing system
- Same play assistant engages child in behavioral task
VRA Results

T levels:
- No significant effect of condition or electrode (p>0.6)

![Box plots showing T-levels for Basal, Middle, and Apical regions for In-person and Remote conditions with N = 16.](image-url)
VRA Results

Hit Rate:
• No significant difference in # attempts (p = 0.3)
 – In-Person = 6.9 attempts
 – Remote = 7.2 attempts

• No significant difference in Hit Rate (p = 0.9)
 – In-Person = 77.8%
 – Remote = 76.8%
VRA Results

Test Time:

• 2-way RM ANOVA:
 – No significant effect of Visit or Condition (p > 0.2)
 – Visit 1 = 13.5 min; Visit 2 = 12.3 min
 – In person = 12.5 min; Remote = 13.3 min
VRA Results

Questionnaire:

• 50% of respondents reported it can be hardship to attend programming appointments

• 81% of respondents said they would use telepractice “some or all of the time” for routine programming needs

• 100% of respondents did not feel overwhelmed at all by the distance technology
Conclusions

• T levels are not significantly different between in-person and remote conditions → it can be done!

• Activation or device/equipment checks should be done in-person.
References

Acknowledgements

Assistance with data collection:
• Jenny Goehring
• Sara Robinson
• Jacquelyn Baudhuin
• Maggie Miller
• Rachel Scheperle

Technical assistance:
• Roger Harpster
• Dave Jenkins
• Todd Sanford

Funding:
NIH, NIDCD
R01 DC013281 and
P30DC04662
Thanks for sticking around on a Saturday!

Joshua Sevier, Au.D.

Joshua.Sevier@boystown.org