STABILITY ANALYSIS FOR THE RIGHT ABUTMENT SPILLWAY
ISABELLA DAM CA

AEG Annual Meeting
September 2017

Michael Nield, Senior Engineering Geologist
U.S. Army Corps of Engineers, Huntington WV
LRD Dam Safety Production Center
Dam Safety Modification Mandatory Center of Expertise

"The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation."
STABILITY ANALYSIS FOR THE RIGHT ABUTMENT SPILLWAY – ISABELLA DAM, CA

OUTLINE

A. PROJECT INFORMATION
 1. Project Location
 2. Project Description
 3. Site Geology

B. SPILLWAY STABILITY
 1. Founding Elevations
 2. Plane Analysis
 3. Wedge Analysis

C. CUT-SLOPE STABILITY
 1. Stereonet Analysis
 2. Construction Concerns
Isabella Dam – Site Plan

MAIN DAM
- 185 ft high
- Zoned earth fill (almost homogeneous)
- Foundation primarily granitic bedrock

AUXILIARY DAM
- 100 ft high
- Homogeneous silty sand
- Foundation = alluvial soils and bedrock

SPILLWAY
- Ungated spillway
- Ogee Weir

OUTLET WORKS
- Hydropower

Constructed 1948-1953
Primary Purposes: Flood control (~74%); Irrigation (~21%); Non-Federal Hydropower (~5%)
Primary Issues – Potential Failure Modes

Erosion Through a Crack Near the Main Dam Crest

Kern Canyon Fault (Previous Interp: Inactive) Rupture Auxiliary Dam

Undersized spillway

Hydrologic Overtopping

Internal Erosion and Liquefaction Potential of the Foundation Alluvium

Erosion Along the Conduit

Seismic Stability of Borel Conduit and Tower

Cross Section – Kern Canyon Fault – Auxiliary Dam
Consequences of Dam Failure - Inundation

Vicinity Map

ISABELLA DAM

Immediate Inundation Area

Subsequent Inundation Area
Isabella Dam – Proposed Modifications

- **Main Dam**
- **Auxiliary Dam**
- **Existing Service Spillway**
- **Kern Canyon Fault**
Proposed Modifications – Emergency Spillway

Main Dam

Existing Service Spillway

Proposed Emergency Spillway

Kern Canyon Fault

Upstream

Labyrinth Weir

Emergency Spillway Physical Model
Proposed Modifications – Main Dam

- Raise Top of Main Dam by 16’
- Downstream Filter & Drain
Proposed Modifications – Main Dam

- Raise Top of Main Dam by 16'
- Downstream Filter & Drain

Main Dam
Auxiliary Dam
Proposed Emergency Spillway
Kern Canyon Fault
Proposed Modifications – Auxiliary Dam

- Raise Top of Auxiliary Dam by 16’
- Downstream Buttress with Filter & Drain

Section - Auxiliary Dam Inside Fault Zone

Section - Auxiliary Dam Outside Fault Zone
Proposed Modifications

- Raise Top of Main Dam by 16’
- Downstream Filter & Drain

- Raise Top of Auxiliary Dam by 16’
- Downstream Buttress with Filter & Drain
Proposed Modifications – Right Abutment Spillway

- Main Dam
- Right Abutment Spillway
- State Route 155
- SR 155
- Main Dam Raised 16’
- Flow

3D Image of Proposed Right Abutment Spillway

BUILDING STRONG®
and Taking Care of People!
Site Geology

- Cretaceous-aged Alta Sierra Granite
- Light gray, medium grained, hard
- Varying degrees of weathering
- Moderate to severely fractured

Mount Adelaide (early Cretaceous)

Alta Sierra (late Cretaceous)

Kern River Granite (late Cretaceous)

Right Abutment Spillway

Geologic Map – US Geologic Survey

Existing Service Spillway

Mount Adelaide (early Cretaceous)
Exploratory Drilling

Boring Location Plan

- Proposed Right Abutment Spillway
- Main Dam Raised 16'
- Inclined Boring
- Vertical Boring

Core Samples

Down-Hole Camera Images
Granite - Weathering

- **Decomposed Granite:** reddish brown, soft, soil-like with relic bedrock structure, under 2,000 psi UCS.

- **Highly Weathered Granite:** light reddish brown, soft to moderately hard, individual grains can be easily plucked with a knife, 2,000 – 8,500 psi UCS. Predominant rock type at spillway site.

- **Moderately Weathered Granite:** light reddish gray, moderately hard to hard, difficult to pluck individual grains with a knife, 8,500 to 10,000 psi UCS.

- **Slightly or Unweathered Granite:** Light gray, hard, 10,000 to 25,000 psi UCS.

Boring F1-13-15 Showing Varying Degrees of Weathering
Discontinuities

- **Typical Fracture**: planar shape; smooth surface; occasionally open, iron stained or clay coated; and continuous (10' to +100' length)
- **Distinct Joint Sets (A - K)**
- **Moderate to intensely fractured**
- **Shear Zones**
A. PROJECT INFORMATION
 1. Project Location
 2. Project Description
 3. Site Geology

B. SPILLWAY STABILITY
 1. Founding Elevations
 2. Plane Analysis
 3. Wedge Analysis

C. CUT-SLOPE STABILITY
 1. Stereonet Analysis
 2. Construction Concerns
Potential Spillway Erosion - Consequences

Isabella Dam – Right Abutment Spillway

Oroville Dam - Spillway Erosion
Right Abutment Spillway - Design

Plan View

Profile View
Foundation Elevation – Typical Upstream of Dam Monolith

- Foundation surface will be free of all soil, Decomposed Granite and loose rock.
- Foundation geometry will consist of stair-stepped series of horizontal surfaces.
- Foundation surface will be free of all soil, Decomposed Granite and loose rock.

- Foundation geometry will consist of stair-stepped series of horizontal surfaces.
Founding Elevation – Typical Downstream Monolith

- Foundation surface will be free of all soil, Decomposed Granite and loose rock.
- Foundation geometry will consist of stair-stepped series of horizontal surfaces.

Approximate Base of Near-Surface Decomposed Granite

Preliminary Foundation Elevations

Foundation Drain

Spillway

Top of Ground

Foundation Concrete

Temporary Detour Road

Boring F1-16-04

DRAIN

HW

DG

MW

SW

UW

Soil

Decomposed Granite

Highly Weathered Granite

Moderately Weathered Granite

Slightly Weathered Granite

Unweathered Granite

Cross Section – Station 104+20

-100 -80 -60 -40 -20 0 20 40 60 80 100

2560 2580 2600 2620 2640 2660 2680

30 40 50 60 70 80 90
Final foundation elevations will be established in the field.

- Experienced on-site geologist is required.
- Localized problematic areas are expected.
- Dental concrete may be required.
Spillway Structure - Design Details

Expansion Joint Detail

Section - Downstream - Foundation Drain

Joint Drain Detail

Profile View
Planar Sliding Stability – Input Parameters

- Sliding Resistance for Highly Weathered Granite:
 phi = 33 degrees, cohesion = 0 psi

- 5 degree waviness or i angle (as measured in field)

- Maximum design earthquake: horizontal PGA 0.3g, vertical PGA 0.21g. Seismic coefficient 0.2 (2/3 of 0.3g)
Planar Sliding – Downstream Monolith – Load Cases

<table>
<thead>
<tr>
<th>Load Case 14° Plane</th>
<th>Loading Condition</th>
<th>Required Factor of Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Joints no uplift</td>
<td>Usual</td>
<td>1.5</td>
</tr>
<tr>
<td>Rain - Wet Joints full uplift</td>
<td>Unusual</td>
<td>1.3</td>
</tr>
<tr>
<td>Flood PMF full uplift</td>
<td>Extreme</td>
<td>1.1</td>
</tr>
<tr>
<td>Earthquake MDE no uplift</td>
<td>Extreme</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Cross Section – Downstream of Dam – 14° Plane

Potential Failure Plane (47.8’ length, 14 degree inclination)
Approximate Base of Near-Surface Decomposed Granite
Uplift - Groundwater
Top of Ground
Spillway

Dry Joints no uplift
Usual
Unusual
Extreme
Extreme
1.5
1.3
1.1
1.1
Planar Sliding – Downstream Monolith – Load Cases

<table>
<thead>
<tr>
<th>Load Case 20° Plane</th>
<th>Loading Condition</th>
<th>Required Factor of Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Joints no uplift</td>
<td>Usual</td>
<td>1.5</td>
</tr>
<tr>
<td>Rain - Wet Joints full uplift</td>
<td>Unusual</td>
<td>1.3</td>
</tr>
<tr>
<td>Flood PMF full uplift</td>
<td>Extreme</td>
<td>1.1</td>
</tr>
<tr>
<td>Earthquake MDE no uplift</td>
<td>Extreme</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Cross Section – Downstream of Dam – 20° Plane

Top of Ground

Potential Failure Plane (109’ length, 20 degree inclination)

Approximate Base of Near-Surface Decomposed Granite

Spillway
Planar Sliding – Dam Crest – Load Cases - Construction

<table>
<thead>
<tr>
<th>Load Case 20° Plane</th>
<th>Loading Condition</th>
<th>Required Factor of Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Joints no uplift</td>
<td>Usual</td>
<td>1.5</td>
</tr>
<tr>
<td>Rain - Wet Joints full uplift</td>
<td>Unusual</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Approximate Base of Near-Surface Decomposed Granite

Potential Failure Plane (47.8’ length, 14 degree inclination)

Top of Ground

Uplift - Groundwater

Spillway

DRAIN

Dam Embankment
2D Planar Sliding Equation

$$FS = \left[\left((W \cos(\beta + \epsilon) - U - V \sin(\beta)) \tan(\phi_w) \right) + ((W \cos(\beta + \epsilon) - U - V \sin(\beta)) \tan(\phi_w)) + cL \right] / \left((W \sin(\beta + \epsilon)) + (V \cos(\beta)) \right)$$

WHERE: $Z =$ tension joint height, $Z_w =$ water height in tension joint, $\beta_p =$ dip angle of discontinuity, $\gamma_w =$ unit weight of water, $c =$ cohesion (Highly Weathered Granite = 0 psf), $\phi =$ bedrock friction angle (Highly Weathered Granite = 33$^\circ$), $\phi_w =$ waviness angle of bedrock discontinuity (5$^\circ$ measured at site), $L =$ length of discontinuity, $W =$ weight of block, $U =$ uplift forces [$U = 1/2 \ L \ Z_w \ \gamma_w$], $V =$ horizontal forces [$V = 1/2 \ Z_w \ ^2 \ \gamma_w$], $k =$ Seismic Coefficient (MDE), $\epsilon =$ angle of resultant seismic force [$\epsilon =$ atan (k)], $FS =$ factor of safety

* Seismic influence is derived from EM 1110-1-2907, section 3-11.b.4.e, equation (1).
2D Planar Sliding Stability – Summary & Sensitivity

<table>
<thead>
<tr>
<th>Load Case *</th>
<th>Loading Condition</th>
<th>Required FS</th>
<th>Factor of Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monolith M-6, during construction, w/o hydrostatic pressure, dry</td>
<td>Usual</td>
<td>1.5</td>
<td>2.96</td>
</tr>
<tr>
<td>Monolith M-6, during construction, full hydrostatic pressure, wet</td>
<td>Unusual</td>
<td>1.3</td>
<td>1.98</td>
</tr>
<tr>
<td>Monolith M-12, 45° failure plane, w/o hydrostatic pressure, dry</td>
<td>Usual</td>
<td>1.5</td>
<td>2.96</td>
</tr>
<tr>
<td>Monolith M-12, 45° failure plane, full hydrostatic pressure, wet</td>
<td>Unusual</td>
<td>1.3</td>
<td>2.15</td>
</tr>
<tr>
<td>Monolith M-12, 45° failure plane, full hydrostatic pressure, PMF flow</td>
<td>Extreme</td>
<td>1.1</td>
<td>2.26</td>
</tr>
<tr>
<td>Monolith M-12, 45° failure plane, w/o hydrostatic pressure, seismic MDE</td>
<td>Extreme</td>
<td>1.1</td>
<td>1.56</td>
</tr>
<tr>
<td>Monolith M-12, 20° failure plane, w/o hydrostatic pressure, dry</td>
<td>Usual</td>
<td>1.5</td>
<td>2.02</td>
</tr>
<tr>
<td>Monolith M-12, 20° failure plane, full hydrostatic pressure, wet</td>
<td>Unusual</td>
<td>1.3</td>
<td>1.53</td>
</tr>
<tr>
<td>Monolith M-12, 20° failure plane, full hydrostatic pressure, PMF flow</td>
<td>Extreme</td>
<td>1.1</td>
<td>1.57</td>
</tr>
<tr>
<td>Monolith M-12, 20° failure plane, w/o hydrostatic pressure, seismic MDE</td>
<td>Extreme</td>
<td>1.1</td>
<td>1.21</td>
</tr>
</tbody>
</table>

* All load cases incorporate a 33° sliding friction angle (Highly Weathered Granite) and 5° “waviness” (θ₀, or i) angle (as measured in field).
3D Wedge Analysis

Major Joint Sets, average orientations

<table>
<thead>
<tr>
<th>Wedges</th>
<th>Dip</th>
<th>Dip Direction</th>
<th>% of Total No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>88</td>
<td>149</td>
<td>16</td>
</tr>
<tr>
<td>B</td>
<td>90</td>
<td>112</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>23</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>D</td>
<td>81</td>
<td>228</td>
<td>7</td>
</tr>
<tr>
<td>E</td>
<td>16</td>
<td>188</td>
<td>14</td>
</tr>
<tr>
<td>I</td>
<td>70</td>
<td>270</td>
<td>14</td>
</tr>
</tbody>
</table>

Right Abutment Spillway

Main Dam Raised 16’

Wedge - Two Joints w/ Tension Plane

Hypothetical Wedge
Detrimental Wedges

Utilized Swedge program from Rocscience

Two detrimental wedges: Joint Sets A&C, Joint Sets D&E

Sliding resistance of Highly Weathered Granite: \(\phi = 33^\circ, c = 0 \)

psi w/ 5° waviness added
Joint Sets D&E
With Tension Plane

Joint Sets D&E
W/O Tension Plane

Joint Sets A&C
With Tension Plane

Joint Sets A&C
W/O Tension Plane
Wedge Analysis – Load Cases

- **Dry Joints**
 - Usual

- **Rain Event**
 - Water Filled Joints
 - Unusual

- **PMF Flood**
 - Water Filled Joints
 - Extreme

- **MDE Earthquake**
 - Dry Joints
 - Extreme
3D Wedge Stability – Summary & Sensitivity

Factor of Safety for Wedge Analysis

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Required Factor of Safety</th>
<th>Factor of Safety (from Swedge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D&E w/ tension plane - Usual (dry) Condition</td>
<td>1.5</td>
<td>4.93</td>
</tr>
<tr>
<td>D&E w/ tension plane - Unusual (wet) Condition</td>
<td>1.3</td>
<td>2.03</td>
</tr>
<tr>
<td>D&E w/ tension plane - Extreme (PMF-wet) Condition</td>
<td>1.1</td>
<td>2.07</td>
</tr>
<tr>
<td>D&E w/ tension plane - Extreme (MDE-dry) Condition</td>
<td>1.1</td>
<td>2.34</td>
</tr>
<tr>
<td>D&E w/o tension plane - Usual (dry) Condition</td>
<td>1.5</td>
<td>4.93</td>
</tr>
<tr>
<td>D&E w/o tension plane - Unusual (wet) Condition</td>
<td>1.3</td>
<td>2.93</td>
</tr>
<tr>
<td>D&E w/o tension plane - Extreme (PMF-wet) Condition</td>
<td>1.1</td>
<td>3.30</td>
</tr>
<tr>
<td>D&E w/o tension plane - Extreme (MDE-dry) Condition</td>
<td>1.1</td>
<td>2.58</td>
</tr>
<tr>
<td>A&C w/ tension plane - Usual (dry) Condition</td>
<td>1.5</td>
<td>3.78</td>
</tr>
<tr>
<td>A&C w/ tension plane - Unusual (wet) Condition</td>
<td>1.3</td>
<td>2.33</td>
</tr>
<tr>
<td>A&C w/ tension plane - Extreme (PMF-wet) Condition</td>
<td>1.1</td>
<td>2.39</td>
</tr>
<tr>
<td>A&C w/ tension plane - Extreme (MDE-dry) Condition</td>
<td>1.1</td>
<td>2.07</td>
</tr>
<tr>
<td>A&C w/o tension plane - Usual (dry) Condition</td>
<td>1.5</td>
<td>3.78</td>
</tr>
<tr>
<td>A&C w/o tension plane - Unusual (wet) Condition</td>
<td>1.3</td>
<td>2.47</td>
</tr>
<tr>
<td>A&C w/o tension plane - Extreme (MDE-dry) Condition</td>
<td>1.1</td>
<td>2.10</td>
</tr>
<tr>
<td>A&C w/o tension plane - Extreme (PMF-wet) Condition</td>
<td>1.1</td>
<td>2.56</td>
</tr>
</tbody>
</table>

Sensitivity – Wedge D&E w/ Tension Plane (wet)
A. PROJECT INFORMATION
 1. Project Location
 2. Project Description
 3. Site Geology

B. SPILLWAY STABILITY
 1. Founding Elevations
 2. Plane Analysis
 3. Wedge Analysis

C. CUT-SLOPE STABILITY
 1. Stereonet Analysis
 2. Construction Concerns
Cut-Slope Stability

Cross Section – Station 102+90

- Raised Dam Embankment
- Dam Embankment
- Approximate Base of Near-Surface Decomposed Granite
- Approximate Top of Rock
- Spillway
- Preliminary Foundation Elevations
- Foundation Concrete
- Top of Ground
- Cut-Slope

BUILDING STRONG® and Taking Care of People!
Kinematic Analysis – Input Parameters

<table>
<thead>
<tr>
<th>Wedges</th>
<th>Dip</th>
<th>Dip Direction</th>
<th>% of Total No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>88</td>
<td>149</td>
<td>16</td>
</tr>
<tr>
<td>B</td>
<td>90</td>
<td>112</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>23</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>D</td>
<td>81</td>
<td>228</td>
<td>7</td>
</tr>
<tr>
<td>E</td>
<td>16</td>
<td>188</td>
<td>14</td>
</tr>
<tr>
<td>I</td>
<td>70</td>
<td>270</td>
<td>14</td>
</tr>
</tbody>
</table>

Existing Slope

Sliding Resistance for Highly Weathered Granite:
\[\phi = 33 \text{ degrees}, \text{ cohesion} = 0 \text{ psi} \]
Stereographic Projection – Planar Failure

West Side Cut Slope ½:1

East Side Cut Slope ½:1
Stereographic Projection – Wedge Failure

West Side Cut Slope ½:1

East Side Cut Slope ½:1
Stereographic Projection – Toppling Failure

West Side Cut Slope $\frac{1}{2}:1$

East Side Cut Slope $\frac{1}{2}:1$
Future Construction Concerns

- Overhead boulders or rock fall during excavation.
- Mechanical excavation methods
- Joints with detrimental orientations and low sliding resistance (clay filled or fault gouge)
- Localized problematic areas of Decomposed Granite.
- Experienced on-site geologist is required

Construction Contract Status

- Plans and Specifications completed
- Advertised and Bids received
- Notice to Proceed - soon
- Approximately 4 years to construct
1. Sliding stability for structures can be determined by utilizing equations and methods typically used for cut-slope design. (If the proposed structure is on the side of a hill)

2. Bedrock weathering can have significant impact on rock strength and influence structural design.

3. How can anyone can talk so much about such a small project?
Stability Analysis for the Right Abutment Spillway
Isabella Dam, CA

QUESTIONS