Best Practices for Parasite Control in Beef and Dairy Cattle

Christine B. Navarre, DVM, MS, DACVIM
Extension Veterinarian
Louisiana State University Agricultural Center
Baton Rouge, LA 70803
cnavarre@agcenter.lsu.edu
Why me?

- Not a parasitologist
- Live in parasite heaven
- Interest and passion
Goals

- Go back to biology of nematodes
 - Will learn from past mistakes in small ruminants
 - Will use beef cattle as template
 - Cover dairy at the end
- Think through some scenarios
- Leave you *Dazed and Confused!*
Parasite *Control Program vs. Deworming Program*

- There is no cookbook deworming program
- Depends on location in US
- Depends on management on individual herd
 - Cow-calf vs. stocker vs. feedlot
 - Grazing management
 - Rotational grazing
 - Permanent vs. prepared seedbed
 - Total confinement
Parasite control recommendations are not made in a vacuum!
Parasites

- Decreased feed intake
- Decreased milk production
- Decreased reproduction
- Decreased weight gains, etc.
Life Cycle

Parasite Resistance in Livestock

- Is there a problem?
 - Goats—absolutely
 - Horses—yes
 - Cattle—rising
Anthelmintic Resistance

- Inevitable with drug use
- Can also come in with animals – BIOSECURITY!
Anthelmintic Resistance

- Is a demonstrated reduction in the efficacy of an anthelmintic against a nematode species.
 - Reduction in the % kill against a specific worm species, compared to a proven baseline.
- It is due to a change in the genetic makeup of the worm population that allows it to survive the drug
- “Bad” worms
Refugia

- The proportion of the population that is not selected by drug treatment
 - “In Refuge” from drug
- Population of worms with susceptible genes
 - Dilutes resistant worms in that population
 - On pasture (main area) + in animal
- Key component of slowing drug resistance selection
- “Good worms”
Parents

Selection for Drug Resistance

Drug Treatment

Next Generation

Susceptible

Resistant
Anthelmintic Resistance

- Resistant alleles initially at very low numbers (genotypic resistance)
- Selection pressure
- More worms with resistance genes
- Ultimately phenotypic resistance
 - When ivermectin first released it was not 100% effective
 - Resistance genes pre-exist in worm populations ("tolerance")
Genetics: Worms

- Innate resistance
 - Some worms more resistant than others to certain products—or some products work better against some parasites than others

- Genetic “true” resistance
 - Genetic mutations selected for with drug use over time

- Change in population balance
 - Now more pure *Cooperia* infestations
Gastrointestinal Nematode Resistance Across Active Ingredients

• Typically, gastrointestinal nematode resistance to one active ingredient of a chemical family results in resistance to other active ingredients in that same chemical family

• Within parasite genus or species, resistance to multiple chemical families has been observed

• Resistance is forever
Selection Pressure

- Level of refugia
- # of treatments
- Pharmacokinetics of drugs
- Host parasite interactions
- Biology of the parasite
- Very complicated
Are You Confused Yet?
Are their lessons learned from other livestock species?
Haemonchus contortus
(Barber Pole Worm)

• Sheep, goats, deer, exotic ruminants
 – Also growing problem in cattle
• Blood-sucking worm
 – highly pathogenic
 – anemia
 – hypoproteinemia -- “bottle jaw”
• Most important parasite in sheep/goats raised in warm/wet environments
 – Southern US
Why is *H. contortus* such a problem?

- Very fecund ~ 5,000 eggs per day
 - 300 worms 1.5 million epd per animal
 - 30 goats/sheep 1 billion eggs over 3 weeks
So What Happened in Sheep and Goats?

• The Perfect Storm
 – *Haemonchus contortus*
 • Very fecund
 – Less than 3 week life cycle
 • Lots of infective larva very quickly
 • Many generations over a summer
 – Long transmission season - southern US
 • All year long in some parts
 – Goats acquire little immunity
 • Immunity is slow to develop in sheep
Background to the Problem

- Age of modern anthelmintics
- Parasitologists (and subsequently veterinarians in the field) recommended strategies that maximized benefits of treatment
- Over-reliance on anthelmintics
 - Over-use of anthelmintics
 - Therapeutic vs. prophylactic
 - Loss of common sense management-based approaches
Managing Toward Resistance

• Deworm 6-12X per year
 – Whether needed or not to keep sheep/goats alive
• Underdosing
• Treat everything and move to “safe” pasture
 – NO REFUGIA!
• No pasture rotation
 – Parasites build up – More need for treatment
• The Boer goat arrived
 – No biosecurity
 – “Condominiums for Haemonchus” DG Pugh
The End Result

• Multi-drug resistance is widespread and getting wider in sheep and goats
• Many farms have worm populations that are resistant to all products currently available
 – 1 in 5 in SE (2008)
Cattle Parasites

- *Ostertagia ostertagi*
 - Most pathogenic parasitic species in cattle
- *Haemonchus placei*
- *Trichostrongylus axei*
- *Cooperia sp.*
- *Nematodirus*
- *Bunostomum*
- *Strongyloides*,
- *Oesophagostomum*
- ETC.
Cattle: Ostertagia

- Cool season parasite
 - Loves winters in the south
 - Loves summer in the north
 - Somewhere in-between in the rest

- Hypobiosis
 - Hates summers in the south, etc.

- Type I
- Type II
Cooperia and Haemonchus placeii

- Immunity develops by about one year
- Warm season parasites
 - More of problem in summer
- Rarely cause problems unless in high numbers
 - Intense grazing systems
 - Same pastures used for young calves year after year
 - Few studies (and old) and usually C. oncophora which is considered least pathogenic
 - punctata > pectinata > oncophora
- Resistance is a concern with these parasites at this time
 - Usually C. punctata
 - Don’t know if resistant parasites will be more pathogenic
 - Recent study of pure C. punctata in feedlot showed significant decreases in ADG and intake
Parasites in Cattle

- *Haemonchus contortus*
 - Increasing reports of this in cattle
 - Calves exposed to high levels
 - Pastures with previous goat grazing
 - Low immunity - DAIRY CALVES
Parasite Control: Historical

- Strategic deworming for Ostertagia
 - When parasites can’t survive in environment
 - Most of parasites are in animal
 - Deworming + environmental control = best knockdown
 - Prevents Type II disease
 - Knocks down parasites going into tough nutritional times

- IS THIS STILL A GOOD RECOMMENDATION?
 - Million dollar question
Anthelmintic Resistance: Situation in Cattle
Anthelmintic Resistance in Cattle Parasites

- **US**
 - Well-documented peer reviewed case reports in literature are increasing
 - Started with high-intensity stocker operations
 - >20 yrs use of ivermectin 6-12X per year
 - Two research stations in LA so far
 - Many anecdotal reports
Anthelmintic Resistance in Cattle Parasites

• Kaplan lab, UGA
 – Cow calf operations in Georgia
 • Eprinex, Dectomax, combo Safeguard/Dectomax
 • ML-resistant Cooperia were present on 5 of the 6 farms
 • One farm also ML-resistant Ostertagia (FECR=84.7%, 90%) and Haemonchus (FECR=16.3%, 45%) Epx and Dect. respectively
Anthelmintic Resistance in Cattle Parasites

• Worldwide
 – Name a parasite-dewormer combo and probably a report
 – Ostertagia rising
Anthelmintic Resistance in Cattle Parasites

• Highly effective dewormers available
• Started relying on anthelmintics for strategic control
• Forgot about other methods
 – Reason we have had cases in stockers
 • Paid on gains
 • Use “better” dewormer more frequently
Compounding Factors

- Acquired Immunity
 - Variable
 - Never complete
 - Some exposure is good/needed

- Age
 - Immunity to Ostertagia takes longer
 - Adults never exposed

- Breed
 - Brahman

- Sex
 - Males

- Nutrition

- Larval inhibition

- Within breed
 - Heritability Index = 0.3
Treatment failure ≠ Resistance
Non-Resistance “Treatment Failures”

- **Inadequate dose administered**
 - Underestimated weight
 - Drug was spilled/spit-out
 - Calculation errors
 - Suspensions not thoroughly mixed
 - Invalid extrapolation of dose
 - Treatment not actually given

- **Activity of the drug reduced**
 - Beyond expiration date
 - Stored improperly
 - Generics
 - Very thin animals?

- **Reinfection!**
Non-Resistance “Treatment Failures”

• **Errors in FECRT**
 – Improper or non-quantitative egg counting technique
 – Re-infection
 • Sampled too late after treatment
 • Variation among species & strains
 – Inadequate time for drug to work
 • Sampled too soon after treatment
 – Wide variation within and between animals
What Does All This Mean???

- A diagnosis of parasitism is not indicative of an anthelmintic deficiency, but of a management problem
- Anthelmintics can no longer be thought of as a management tool to be used as needed to improve animal productivity
- Control must be practiced with an eye to the future
- Reality = effective long-term control will only be possible if anthelmintics are used intelligently with prevention of resistance as a goal
What about diagnostics?
Fecal Egg Count Reduction Test

- Suspect lack of efficacy if less than 95% reduction in Fecal Egg Count (FEC)
 - Really for sheep and goats
 - Cattle/horses not validated
 - FEC should start out greater than 100? 200? to be valid
 - Cutoff should be 98%?
 - Compared to pretreatment counts
 - Each animal is its own control
 - Compared to control group
 - Pour-ons and licking behavior

- “Zero-inflated Bayesian hierarchical models”
FECRT Phenotypic Resistance

- Perhaps not think about resistance as “yes” or “no” but as sliding scale
 - FECRT won’t detect until 25% genetic resistance (in sheep and goats)
 - Then it’s too late
Cattle FECRT Issues

• Often low beginning EPG
 – Account for statistical variability??

• Fecundity
 – *Cooperia* & *Haemonchus* more fecund
 • EPG higher but less pathogenic worms
 – Changes with immune status, season

• *Ostertagia* Pre-type II infestation
Cattle FECRT Issues

• Fecal water and volume influence weight and EPG
• Anthelmintics may temporarily sterilize but not kill worms
 – Falsely low EPG-miss resistance?
• You can take multiple samples from the same fecal pat and get varying numbers
 – Can vary with time of day
FECRT Issues

• Variation within lab

• Method
 – Sugar with centrifugation is gold standard
 – Salt/McMasters and Flotac
 • Not as sensitive
 – Standing sugar float
 • Not quantitative
 • StatSpin OvaTube, SqueezeTest
 – May be superior to just standing float for recovery of eggs and make centrifugation less messy
 – Still not quantitative
Hill Farm Research-Summer 2011 (drought)
Dean Lee Research-Summer 2013 (high rainfall and age)

Average EPG
Strongyliid Eggs

• Cannot differentiate HOTC complex eggs
 – “The mother worms cannot even differentiate the baby eggs”
 Dr. Tom Craig, TAMU
Fecal Egg Counts

- Economics vs. disease/welfare
- Economic threshold (USA)
 - Cows - 20 EPG
 - Calves - 50-500 EPG
Other Diagnostics for Evaluating Resistance

- Coproculture
 - Hatch eggs then actually identify and count larvae
- PCR
 - Can give semi-quantitative results as to which eggs are from which species
 - Quantitative techniques under investigation
- Genetic tests
 - Have to know mutation, probe for each mechanism
- Pooled fecal tests, Flotac, phone counting app. Etc.
Other Diagnostics for Evaluating Resistance

- **Drenchrite®**
 - Larval development assay
 - Validated for *H. contortus* (sheep/goats)
 - Detects genetic resistance at 10%
 - Only for drugs effective against larval stages
 - Get “titered” results, larvae identification
- **“Tracer” animals**
 - To estimate pasture contamination/efficacy
 - Expensive/time consuming
 - *Only definitive test for efficacy/resistance*
What About Control?
Targeted Treatment (TT) and Targeted Selective Treatment (TST)

• TT
 – Treat whole herd based on risk keeping refugia in mind
 – Goal is to reduce number of treatments to herd of flock
 • Opposite of “strategic deworming”
 – More prophylactic based on historical epidemiology
• TST
 – Only treat those that will benefit most
 – Based on parasite or production indicators
 • Sheep simulation study indicated that live weight may be best indicator
 – Some studies show it only takes leaving 10% of group untreated to work
 • Likely animal-parasite-age-locale dependent
TST of Sheep/Goats

- Worms not equally distributed
 - 80:20 Rule
- Most worms = most anemic
 - *Haemonchus contortus*
 - Treat or cull (FAMACHA)
 - Genetic selection tool
 - Minimize pasture contamination
- Maximize production vs. sustainable business
 - Survival of the fittest
Selective Treatment

FAMACHA
Five Point Check©

- Eye, back, tail, jaw, nose/coat
- Addresses limitations of FAMACHA
- Helps deal with decision on FAMACHA score 3s
Bottom Line-Goats in Louisiana

- Purebred ("line" bred) show goats
 - Do not ever live on grass
 - Drylot

- Commercial goats
 - Crossbred does
 - FAMACHA to select survivors
 - Purebred bucks for genetics
 - Only on grass during breeding season
Beef Cattle
The Good

- *Haemonchus* (sheep/goats) vs. *Ostertagia* (cattle)
 - *Haemonchus* very fecund compared to *Ostertagia*
 - If combined with bad management- quickly get large numbers of resistant parasites
 - (High output good if need refugia)
 - Could be bad for stockers under “bad” pasture management
 - *Cooperia/Haemonchus*
 - *H. placeii* most common in calves=longer prepatent perion than *H. contortus*
The Good

• *Ostertagia* usually doesn’t kill
 – *Haemonchus* in sheep/goats does
 • Leads to more need for treatment
• *Ostertagia* least likely to get resistance “buildup”
 – Short lived adults-die off quicker
 – Less time to produce eggs
 – Buildup of resistant parasites will take longer
• Cows act as vacuum cleaners for *Cooperia* and *Haemonchus*
The Good

• There is hope for diagnostics
 – Drenchrite
 – Statistical modeling -diagnostics and epidemiology
 – Genetic tests for worm populations and animals (SNPs)
• There is hope for increasing refugia
• Because of awareness, producers more likely to listen to us
The Bad

- Resistant genes already there
 - No way yet to detect
- No product is immune
- Resistance is forever
 - Except for levamisole
 - Reversion to susceptible in 7 years with no use (sheep)
- We are less likely in cattle to have something clinical, simple, effective and chuteside like FAMACHA
The Ugly

• What we don’t know
 – What role does refugia play in cattle?
 • Should we continue to recommend strategic deworming of all cattle at once?
 » Decreases refugia but also decreases the need for as many future treatments
 – How exactly should we modify our current recommendations
 • Different types of operations (cow-calf vs. stocker)
 • Different parts of the country
 • Different times of year
 • Grazing-young before old or vice versa
The Ugly

• If we want to selectively treat/cull susceptible individuals, how do we do that?
 – FEC?
 – Body condition?
 • Young vs. older
 • Sheep and goats
 – most resistant usually not best growth
The Ugly

- Heritability of FEC is low to moderate
- Correlations of FEC to other production traits
 - Mixed results
 - Cattle-FEC and weaning/yearling weight was .41/.34
 - Positive but unfavorable correlation might be due to resilience-ability of host to maintain undepressed production under parasite challenge
Genetic Markers: Animals

• One gene or multiple?
• Same for all parasites or parasite dependent
 – BRDS
• Animal species/breed dependent
 – Taurus vs. indicus
• Genotype x environment interactions
 – Organic, high rainfall, arid, etc.
The Ugly

• Will we see resistance in *Ostertagia*?
 – Or better question-when will we see…??

• Is resistant *Cooperia* more pathogenic?
 – Will that change expected patterns?
 • Number of parasites to be pathogenic
 • Problems in older animals
 • Changes in seasonal patterns

• It is a moving target
 – Can we figure our what to do before it changes again
Now What?

• Based on what we know and surmise, what are best practices for diagnosis and control?
Best Management Practices: Fecal Sample Collection and Quantitative Egg Counts for Detecting Anthelmintic Resistance in Cattle

- Collect approximately 20 fecal samples (more is better) from group of cattle of similar age at the time of deworming. Always take samples from the rectum and place in a plastic bag. Remove any excess air and seal the sample. Refrigerate if samples will not be performed the same day.
- Perform McMaster’s technique for quantitative fecal egg counts. If sample is 0 on McMaster’s, perform a Wisconsin Double Centrifugal Sugar Flotation.
- In 14-21 days collect follow-up fecal samples from the 15 animals with the highest eggs per gram from the previous sampling.
Best Management Practices: Fecal Sample Collection and Quantitative Egg Counts for Detecting Anthelmintic Resistance in Cattle

• Calculate the % fecal egg count reduction for each animal
 \[\frac{\text{Sample 1 EPG} - \text{Sample 2 EPG}}{\text{Sample 1 EPG}} \times 100 = \% \text{ reduction in eggs per gram} \]

• Average the results

• Consider turning in pooled fecal samples pre and post treatment for parasite species identification via coproculture

• If submitting samples to a commercial lab for fecal egg counts, make sure to ask for the above techniques.
FECRT Summary

• Take as many fecals as possible
• Pick 15 animals with highest counts-repeat on same animals!
• Wait at least one month after start of grazing
Control in General

• Increase immunity
 – Protein
 – Newer research looking into delaying treatment to increase immunity and decreasing need for treatment later
 – Increase growth = increase need for forage = increase intake = increase exposure to larvae = increase immunity early (computer modeling)
Control in General

- Use cows as vacuum cleaners for calves
 - Also other grazing livestock species
 - Horses, goats
- Don’t buy resistant worms
 - Deworm with multiple classes on arrival
 - Drylot for 24-48 hours
 - Turnout onto contaminated pasture
- Cull poor doers
- USE HYBRID VIGOR!
Pasture Rotation for Parasite Control

• Pasture rotation is not necessarily for parasite control

• Rotate for pasture management & nutritional management

 • Sometimes it’s bad
 – “Bermudagrass was developed to propagate Haemonchus”
 Tom Craig, TAMU

• Can help control secondary effects of parasites
Clean vs. Contaminated Pasture

- **Cleaner**
 - Environment cleans
 - Ostertagia in summer
 - Cooperia in winter
 - Grazed by other species
 - Stocker pastures grazed by cows (cleaner)

- **Cleanest**
 - Tilled and planted
 - Used for hay

- **Contaminated**
 - Permanent pastures
 - Overseeded pastures
Rotation of Dewormers

• Pick the right product for the right time
 – Inhibited larva
 – Fly control benefits
• Don’t just use for fly control
Use products properly

- Use generics with data to back them up
- Use pour-ons sparingly
- Dose adult cows with dose for heaviest cow
- Dose calves based on actual weight or heaviest
- Don’t deworm in feed or mineral
- Store products properly
 - Not outside!
- Combos
Keeping Refugia

• Either on pasture, in animals, or both
 – If you have a clean pasture, you need some “dirty” animals
 • Don’t deworm all animals before turnout onto clean pastures
 – Especially with macrocyclic lactones and other long acting products
 – Most practical with cow-calf pairs
 » Don’t deworm cows 5 years and over-older cows then have refugia
 » Based on breed and locale
 – Avoid deworming cows going into summer in South-no Ostertagia refugia
 – If you want to have all clean animals (calves, stockers, replacement heifers) have “dirty” pasture or non-permanent pastures
 • Avoid keeping replacement heifers that have all been dewormed and then put on clean pasture for grazing
 – They will likely only have resistant parasites in the gut
 – If a must, treat like new arrivals (combo treat, drylot, turnout on contaminated pasture)
Keeping Refugia

• Targeted selective treatment of calves based on FEC
 – Hard sell to producers but best way to keep Cooperia refugia
 – Some initial studies indicate this can be done with little impact on production
 – Very dependant on situation

• Stockers from multiple sources
 – Source of cattle had the most influence on performance
 – Overshadowed parasite control differences
Keeping Refugia

• For replacement heifers where deworming the whole group may be desirable
 – Turn out onto contaminated pasture following deworming
• Avoid keeping replacement heifers that have all been dewormed and then put on clean pasture for grazing (ex, from stocker operation)
 – They will likely have only resistant parasites in the gut
 – If unavoidable, treat like new herd additions above
• Avoid using the same pastures for young stock year after year
 – For example, don’t raise replacement heifers in the same pasture year after year – move the “heifer pasture” around on the ranch
Keeping Refugia

• For stocker calves where deworming the whole group may be desirable
 – Avoid permanent pastures used only for young stock combined with long-acting products
 – This is certain to produce an almost pure anthelmintic resistant population of parasites over time

• If long-acting products are used, all stockers should go to feedyards for eventual harvest, and pastures should be tilled, used for hay or left fallow for several months
 – Even if you turn out onto contaminated pasture cattle act as vacuum cleaners and eliminate pasture contamination over time
 – Only thing left are resistant parasites in the animal
 – Will they prevent development of immunity?
Replace Refugia???

- Some studies show promise
 - Sheep
 - Cattle
Pitfalls

• Type II Ostertagiasis
 – If becomes a problem, may have to re-evaluate program

• Switch to more use of benzimidazoles may lead to resistance in that class
Alternative Controls

- Tannins in forage (fresh or hay/pellets) to decrease egg hatching and infective larvae development
 - *Sericea lespedeza*
Condensed Tannin Containing Plants

- Sericea lespedeza
 - Forage that grows relatively well in SE US
 - Weed ???
 - Establishment as pasture may fit some operations
 - Hay, meal, pellets, etc. may be suited for many other operations
 - Has effect on *Haemonchus*

- Plant extracts
 - Drench or in pelleted feed
Copper-oxide Wire Particles

- *Haemonchus* only
- Marketed for use in cattle (Copasure) where copper deficiency is common
- Appears to work better in sheep but potentially toxic
- May be worth a try in goats
 - Selective treatment for individuals (FAMACHA)
- Copper sulfate added to feed is not the same
 - Does not work
Worm-trapping Fungi

- *Duddingtonia flagrans*
 - Feed to animals, pass in feces, prevent larval development
 - Must be fed every day for 60 days
 - Works in other species also
 - Bolus being developed?
 - Affects all worm larvae in feces
 - Feed daily with supplement
 - Primary objective is to clean up pasture
 - Long term results (?, maybe 2-3 years)

https://www.youtube.com/watch?v=jOwCOLf0IRU
Vaccine

• Promising for *Haemonchus (Barbervax)*
 – Works well in sheep and goats
 – Drawback
 • 3 initial doses
 • Protection only lasts 6 weeks
 – Expensive to produce now
 • Genetically engineered product is under development
 – Cost will be acceptable if successful
Alternative Control

- Co-grazing with other livestock species
- Buy refugia?
- Breed selection?
 - Use resistant breeds for crossbreeding
 - Hybrid Vigor
- Other plants
 - Birdsfoot trefoil
- Vitamin E
- Immune modulating drugs
- Engineered probiotics Cry5B - protein made naturally by the soil bacterium *Bacillus thuringiensis*, which is harmless to higher animals but toxic to parasitic worms
- GMO worms and or GMA animals
- Integrated control programs
 - Sounds great BUT….
 - We don’t know yet what that actually entails
New Products?

- Resistance (~2 years) will outpace new drugs (decades)
- Monepantel (Zolvix®)
 - Amino-acetonitrile derivative (AAD)
 - US soon?
- Derquantel
 - Spiroindole (SI)
 - Sheep in Australia/NZ
 - Toxic to horses
 - Not likely to come to US
- “Worminator” system
 - New computer based technology for rapid screening of antiparasitic compounds
 - Looks at motility post treatment
 - Doesn’t work for ML well
Common Situations-Beef

• Assumptions
 – Early spring calving
 – Fall weaning
 – Retaining some replacements
 – Maybe keeping stockers
Common situations-Beef

- **Winter-with ryegrass**
 - High protein is good
 - But *Ostertagia* is happy
 - Pay close attention to deworming replacement heifers, young cows and bulls
 - Overseeded/drilled pastures that were recently grazed will likely be contaminated
 - Deworming all is probably ok but not always necessary
 - Prepared seedbed will likely have no refugia
 - Don’t deworm all right before turnout
 - Graze for a month then deworm all
Common situations-Beef

• Deworm in fall for flukes
 – Will affect other parasites also
 – Keep on contaminated pasture
 – Ivermectin + clorsulon-don’t treat all?
 – If severe problems requiring treatment of all ages consider albendazole?
 – Resistance in flukes?
Common Situations-Beef

• Winter-no ryegrass
 – Poor nutrition combined with permanent pastures during peak Ostertagia time spells potential disaster
 • Especially when combined with cold, wet, mud
 – Decision to deworm again depends on nutrition, BCS, diagnostics, previous deworming, etc.

• Spring
 – Deworm nursing calves based on fecals
 – Deworm replacements and bulls depending on winter deworming, fecal samples
Common Situations-Beef

• Summer
 – Deworm nursing calves based on fecal exams
 – Fall-born summer stockers
 • Most susceptible age for *Cooperia* going into peak *Cooperia* season
 • Best to treat with product selection based on diagnostics and based on fecal egg counts
 – >250 EPG = treat?
 • Consider combo treatments
 – Macrocyclic lactones plus a white dewormer (with levamisole also=best)
 – Need more research
 » All at once?
 » In series?
 » What order?
Common Situations-Dairy

- Calves in hutches-little risk
- Weaned from hutches-BIG RISK
 - The “heifer pasture”
 - Always same pasture(s)
 - Continuous use
- Milking-depends on management
 - Drylot-little risk
 - Grazing-evaluate situation and diagnostics
Common Situations-Zoo
Hoofstock

• Same issues with resistance
• Multi species exhibits?
• Evidence that integrated control strategies can reverse resistance (Disney Animal Kingdom)
Summary - What can we do now?

• Minimize other stressors
• Maximize nutrition
• Understand parasites in your locale
• Use best statistical analysis for FECRTs
• Think about refugia
• Think about pasture management
• Don’t buy resistant worms
• Proper product selection and use
• Cull poor-doers
Bottom Line

• Balancing Act
 – Short term economics
 – Long term sustainability
• Don’t know how much we can give up now vs. how much we will gain later
 – May never make up short term losses
• “The true meaning of life is to plant trees, under whose shade you do not expect to sit” Nelson Henderson
Refugia