The Textbook, the Teacher, and the Derivative

Linda Leckrone
lleckron@umich.edu
AMATYC, Nashville, TN, 2014
Acknowledgements

University of Michigan School of Education and Rackham Graduate School

The Teaching Mathematics in Community Colleges Research Group @ U-M: Vilma Mesa, Anne Cawley, Elaine Lande, Linda Leckrone, Martha McAlister-Raeburn

Funded in part by NSF Career DRL 0745474 to Vilma Mesa. The opinions expressed here are those of the author and do not reflect the views of the National Science Foundation.
The Study

Background and Motivation

- Personal
- Community Colleges
- Calculus
- Derivative
Research Questions

1) How do faculty use the textbook as a resource for the planning and teaching of derivatives in first semester calculus?

2) How do teachers describe a derivative for themselves and for their students?
Methods

Five community college calculus teachers
Two classroom observations each (except online teacher)
Post-observation interviews
Formal interviews
Transcription and coding along frameworks for textbook use and derivatives.
Open coding
(Textbook analysis)
Framework

Brown – teacher tool relationship

• Offloading
• Adapting
• Improvising
• Other?

Results

How Teachers Used Their Textbooks

- Offloading
- Adapting
- Improvising
- Other textbook

Arthur
Bruce
Charles
Duncan
Edward
Other Textbook

Textbook as resource and reference
- Bruce, Charles, and Edward referred to the textbook for notation
- All participants expected students to use textbook for content help
- Charles and Edward used the textbook to define the boundaries of the calculus course

Evaluation of textbook
- “The number of problems is good. We like the layout, we like the explanations.” (Bruce)
Research Question 2

How do teachers describe a derivative for themselves and for their students?
Framework (Park)

Park’s (2013) four stages of development of student understanding:

1. a point-specific value
2. a collection of values at multiple points
3. a function
4. an operator

Derivative: \(f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \)

The Teachers

So, I mean, all of that is just kind of connected to me. It’s all one big circle. Slope, secant line, instantaneous rate of change, it’s all the same thing” (Charles 485-486)

First I’m going to get the verbal model [from students]. I’m going to get all three verbal models…. the instantaneous slope of the curve. It’s the instantaneous rate of change. It’s the slope of the tangent line. Right? Then I would expect [students] to give me the formal model… which is the limit as something goes to zero of the function plus something minus the function over delta x. (Duncan, 386 – 396)
The Teachers

Edward, observation 1:
• The derivative is “nothing more than a difference of functions and a limit”… (object)
• “the derivative is not distributive” (process)

Bruce, observation 1:
• $e^y = x$ is “one huge derivative” (object)
• “take the derivative of both sides” (process)
Conclusions

• The teachers used the textbook in a variety of ways.

• The teachers had (as expected) a robust understanding of conceptions of the derivative

• The teachers did not always differentiate between the derivative as a process and an object.
Future Research

- Do teacher expectations of student use of text match what students do?
- Is there a difference in how part-time vs. full time faculty use their textbook for teaching and planning?
- How do different textbooks treat the process/object layer of the derivative?
- All of the above for Integrals
Questions?

Linda Leckrone
lleckron@umich.edu
Differentiability

Differentiable at a point:

- A function \(f \) is differentiable at a point \(c \) if
 \[
 \lim_{{h \to 0}} \frac{f(c+h)-f(c)}{h}
 \]
 exists.

Differentiable on an interval:

- Similarly, \(f \) is differentiable on an open interval \((a, b) \) if
 \[
 \lim_{{h \to 0}} \frac{f(c+h)-f(c)}{h}
 \]
 exists for every \(c \) in \((a, b) \)

From: http://www.sagemath.org/calctut/differentiability.html
“A function is **differentiable at** \(x \) if its derivative exists at \(x \) and is **differentiable on an open interval** \((a,b)\) if it is differentiable at every point in the interval.”

A closer look at the textbook

A function is differentiable at x

- if its derivative exists at x
- and is differentiable on an open interval (a, b)

if it is differentiable at every point in the interval.