Dendritic Cell Vaccine for Treatment of HIV

Cesar de Almeida Neto, MD, Ph.D.

cesarnt@uol.com.br

Faculty of Medicine, University of São Paulo
Fundação Pró-Sangue Hemocentro de SP

No conflicts of interest to declare
Aims

• To overview different vaccines for HIV/AIDS treatment
• Review the rational and results of current protocols for therapeutic immunization with dendritic cells
• Present the ongoing Brazilian phase II study of dendritic cell therapeutic vaccine for HIV
• Discuss the role of apheresis to obtain therapeutic vaccines for HIV
Global statistics HIV/AIDS

35 MILLION PEOPLE WORLDWIDE ARE CURRENTLY LIVING WITH HIV/AIDS.

THE VAST MAJORITY OF PEOPLE LIVING WITH HIV ARE IN LOW- AND MIDDLE-INCOME COUNTRIES, PARTICULARLY IN SUB-SAHARAN AFRICA.

3.2 MILLION CHILDREN WORLDWIDE ARE LIVING WITH HIV. MOST OF THESE CHILDREN WERE INFECTED BY THEIR HIV-POSTIVE MOTHERS DURING PREGNANCY, CHILDBIRTH OR BREASTFEEDING.

www.aids.gov
Global statistics HIV/AIDS

Adults and children estimated to be living with HIV | 2013

North America and Western and Central Europe
2.3 million
[2.0 million – 3.0 million]

Caribbean
250,000
[230,000 – 280,000]

Latin America
1.6 million
[1.4 million – 2.1 million]

Middle East & North Africa
230,000
[160,000 – 330,000]

Sub-Saharan Africa
24.7 million
[23.5 million – 26.1 million]

Eastern Europe & Central Asia
1.1 million
[980,000 – 1.3 million]

Asia and the Pacific
4.8 million
[4.1 million – 5.5 million]

Total: 35.0 million
[33.2 million – 37.2 million]

Source: UNAIDS
HIV vaccines

• **Prophylactic vaccines**
 – best strategy for controlling the HIV pandemic.
 – the lack of immunogens capable of inducing broadly neutralizing antibodies responses to prevent infection is the major limiting

• **Therapeutic vaccines**
 – elicit cellular immune responses to control viral load and delay progression to disease are possible to be obtained

Klein M. Vaccine 2003;21:616-619
Development of therapeutic vaccines

• HIV target cell
 – CD4+ lymphocyte

• Loss of function and numbers of CD4+ lymphocytes reduces the hosts immune capacity

• Central roles of antigen-specific CD4+ T-helper and CD8+ cytotoxic T lymphocytes (CTL) in the control of HIV viremia

Wahren B et al. NEJM 1986;315:393-394
Ogg GS et al. Science 1998;279:2103-2106
What is the role of dendritic cells in HIV infection?
Development of therapeutic vaccines

• Most prototypes of therapeutic vaccines were developed to treat certain types of cancer

• In the HIV/AIDS context
 – In adjunction to ART may reduce adverse side-effects
 – Allow structured treatment interruptions of ART
 – Limit the emergence of viral mutations
 – Promote the clearance of the virus and eliminate latent reservoirs (functional HIV cure)
Types of therapeutic vaccines

• whole inactivated vaccines
• recombinant proteins
• synthetic peptides or lipopeptides
• virus-like particles
• DNA vaccines
• live recombinant viral or bacterial-vectored vaccines
• dendritic cells loaded with inactivated virus or viral antigens
Types of therapeutic vaccines

• whole inactivated vaccines
• recombinant proteins
• synthetic peptides or lipopeptides
• virus-like particles
• DNA vaccines
• live recombinant viral or bacterial-vectored vaccines
• dendritic cells loaded with inactivated virus or viral antigens
In Vitro Human Immunodeficiency Virus Eradication by Autologous CD8+ T Cells Expanded with Inactivated-virus-pulsed Dendritic Cells

WEI LU AND JEAN-MARIE ANDRIEU
J Virol 2001;75:8949-56
Therapeutic dendritic-cell vaccine for chronic HIV-1 infection

Wei Lu, Luiz Claudio Arraes, Wylla Tatiana Ferreira, Jean-Marie Andrieu

HIV whole blood cultured
Therapeutic dendritic-cell vaccine for chronic HIV-1 infection

Wei Lu, Luiz Claudio Arraes, Wylla Tatiana Ferreira, Jean-Marie Andrieu
Therapeutic Immunization with Dendritic Cells loaded with Heat-Inactivated Autologous HIV-1 in Patients with Chronic HIV-1 Infection

Felipe Garcia et al

- therapeutic vaccine with autologous monocyte-derived DCs loaded with heat-inactivated autologous HIV
- 12 patients with chronic HIV infection who were receiving ART
- 3 plasmapheresis were performed to obtain autologous virus to pulse DCs (PVL peak)
- Whole blood plasma monocytes were collected and culture
- Tolerance of vaccine was good
- There was a decrease in set-point PVL of $\geq 0.5 \log_{10}$ in 4 of 12 immunized patients (24 weeks)
- Responses were weak and transient
Fig. 3 Drop of pVL setpoint at weeks 12, 24, 36, and 48.

Felipe García et al., Sci Transl Med 2013;5:166ra2
Dendritic cell-based therapeutic vaccine elicits polyfunctional HIV-specific T-cell immunity associated with control of viral load

Yves Lévy1,2,3,4, Rodolphe Thiébaut4,5,6,7, Monica Montes4,8,9, Christine Lacabaratz1,2,4, Louis Sloan8,10, Bryan King10, Sophie Pérusse5,6, Carson Harrod4,8,9, Amanda Cobb8,9, Lee K. Roberts8, Mathieu Surenaud1,2,4, Céline Boucherie5, Sandra Zurawski4,8,9, Constance Delaugerre11, Laura Richert4,5,6,7, Geneviève Chêne4,5,6, Jacques Banchereau1,2,4,8,9,12 and Karolina Palucka4,8,9

Efforts aimed at restoring robust immune responses limiting human immunodeficiency virus (HIV)-1 replication therapeutically are warranted. We report that vaccination with dendritic cells generated ex vivo and loaded with HIV lipopeptides in patients ($n = 19$) on antiretroviral therapy was well tolerated and immunogenic. Vaccination increased: (i) the breadth of the immune response from 1 (1–3) to 4 (2–5) peptide-pool responses/patient ($p = 0.009$); (ii) the frequency of functional T cells (producing at least two cytokines among IFN-\(\gamma\), TNF-\(\alpha\), and IL-2) from 0.026 to 0.32\% ($p = 0.002$) and from 0.26 to 0.35\% ($p = 0.005$) for CD4+ and CD8+ T cells, respectively; and (iii) the breadth of cytokines secreted by PBMCs upon antigen exposure, including IL-2, IFN-\(\gamma\), IL-21, IL-17, and IL-13. Fifty percent of patients experienced a maximum of viral load (VL) $1 \log_{10}$ lower than the other half following antiretroviral treatment interruption. An inverse correlation was found between the maximum of VL and the frequency of polyfunctional CD4+ T cells ($p = 0.007$), production of IL-2 ($p = 0.006$), IFN-\(\gamma\) ($p = 0.01$), IL-21 ($p = 0.006$), and IL-13 ($p = 0.001$). These results suggest an association between vaccine responses and a better control of viral replication. These findings will help in the development of strategies for a functional cure for HIV infection.
Phase II study of a therapeutic autologous dendritic cell vaccine pulsed with inactivated HIV in patients with HIV-1 infection
Recruitment & Endpoints

• Recruitment
 • 25 chronic infected HIV-1 patients
 – Group 1: 3×10^7 DCs (n=5)
 – Group 2: 3×10^6 DCs+HIV (n=10)
 – Group 3: 3×10^7 DCs+HIV (n=10)
 • ≥18 years-old
 • Untreated HIV+
 • CD4+ ≥350 cels/µl
 • PVL ≥ 5,000 copies/mL

• Endpoints
 – Tolerance and safety
 – PVL & CD4+ 12 months after vaccination
Therapeutic vaccine

3 doses (0, 15, 30 days)
Morphological profile of monocytes, differentiated into immature and mature DCs (100x)

1. Monocyte
2. Immature DCs
3. Mature DCs (vaccinal product)
Vaccine production
Biosafety level 3 lab
Leukapheresis: demographics and hematologic parameters

• 45 volunteers
• 27 included
• 34 collections
• Gender
 – 22 men (81.5%)
 – 5 women (18.5%)
• Age (mean=32y)
 – Range 22-48y
• TBV (mean=4785mL)
 – Range 3743-5767mL

• Hemoglobin (median)
 – Before: 14.2 g/dL
 – After: 12.8 g/dl (9.8%)

• WBC (median)
 – Before: 5531/mm³
 – After: 4576/mm³ (17.2%)

• Platelets (median)
 – Before: 195X10³/mm³
 – After: 139X10³/mm³ (28.7%)
Leukapheresis: run & collection

- Terumo® Spectra - MNC
- Processed volume (median) = 7.638 mL
- Processed TBV (median) = 1.61
 - Range 1.06-2.75
- Time (median)=129 minutes
- Flow = 50-70 mL/min
- Collection volume (median)=126mL
 - Range 23-222mL
- MNC collected (median)=1.1x10^{10} cells
 - Range: 1-1.6X10^{10} MNC cells
- Adverse events
 - 8 (23.5%) perioral paresthesia
 - 1 (2.9%) nausea & vomiting
 - 2 (5.9%) lost access
Monocytes viability after collection

<table>
<thead>
<tr>
<th></th>
<th>% viable monocytes (CD14+Dioc6+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole blood</td>
<td>90</td>
</tr>
<tr>
<td>≥2 TBV</td>
<td>50</td>
</tr>
<tr>
<td>1.5 TBV</td>
<td>80</td>
</tr>
</tbody>
</table>
T lymphocytes activation (CD3+ and CD38+)

- Whole blood
- ≥2 TBV
- 1.5 TBV
P57/26

CD14	HLADR	CD1a	CD80	CD86	CD83	CD40
[10] | [90] | [10] | [20] | [30] | [5] | [2]

P40/12

CD14	HLADR	CD1a	CD80	CD86	CD83	CD40
[10] | [80] | [10] | [40] | [60] | [5] | [20]
Vaccinal product

<table>
<thead>
<tr>
<th></th>
<th>Participant 40/12</th>
<th>Participant 57/26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mature DCs in the final product*</td>
<td>5%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Viability**</td>
<td>>70%</td>
<td>40%</td>
</tr>
</tbody>
</table>

% of Mature DCs from the total of PBMNC collected
** Minimum viability >70%
Results - DC 3×10^7

Overall good tolerance and minor adverse events related to vaccine application
Results - DC 3×10^6+HIV
Results – DC 3X10⁷+HIV
Conclusions

• Dendritic cell vaccines pulsed with autologous HIV were safe and well tolerated.
• No immunological response
• Virological responses were modest with better results when a higher number of DCs were inoculated.
• Leukapheresis was essential:
 – to collect the amount of viable PBMC to produce the vaccine
 – to culture autologous HIV
 – to reduce participants visits
 – to save time (collections, cultures)
• Knowledge acquired can be used to research the role of therapeutic vaccines in other infections, as HCV or HBV, for instance.
• Elucidation of basics aspects of production and applications of this vaccine are needed before a Phase III clinical trial.
Acknowledgements

Professor Alberto José da Silva Duarte
Dr. Alexandre de Almeida
Dr. Telma Miyuki Oshiro
Dr. Giuseppina Maria Patavino
Dr. Alfredo Mendrone Júnior
BSN Ana Maria Arrifano
BSN Sonia Ribeiro
BSN Alessandra Andrade
Professor José Alexandre Marzagão Barbuto
doe sangue
E Passe a bola para um amigo

PRO SANGUE
HEMOCENTRO DE SÃO PAULO