Apheresis Review Session
Clinical Applications: Therapeutics

Jeffrey L. Winters, M.D.
Division of Transfusion Medicine

American Society for Apheresis 2016 Annual Meeting
Palm Springs California, Wednesday May 4, 2016
6th Special Edition of the Journal of Clinical Apheresis

- 2013 – Edited by Joseph Schwartz and Beth Shaz
- Writing committee of:
 - Jeffrey L. Winters
 - Anand Padmanabhan
 - Rasheed A. Balogun
 - Meghan Delaney
 - Michael L. Linenberger
 - Zbigniew M. Szczepiorkowski
 - Mark Williams
 - Yanyun Wu
- 78 indications categorized

ASFA Categories

Indications for Therapeutic Apheresis – ASFA 2013 Categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Disorders for which apheresis is accepted as first-line therapy, either as a primary standalone treatment or in conjunction with other modes of treatment.</td>
</tr>
<tr>
<td>II</td>
<td>Disorders for which apheresis is accepted as second-line therapy, either as a standalone treatment or in conjunction with other modes of treatment.</td>
</tr>
<tr>
<td>III</td>
<td>Optimum role of apheresis therapy is not established. Decision making should be individualized.</td>
</tr>
<tr>
<td>IV</td>
<td>Disorders in which published evidence demonstrates or suggests apheresis to be ineffective or harmful. IRB approval is desirable if apheresis treatment is undertaken in these circumstances.</td>
</tr>
</tbody>
</table>

Recommendation Grades

Grading recommendations adopted from Guyatt et al

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Description</th>
<th>Methodological Quality of Supporting Evidence</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1A</td>
<td>strong recommendation, high-quality evidence</td>
<td>RCTs without important limitations or overwhelming evidence from observational studies</td>
<td>Strong recommendation, can apply to most patients in most circumstances without reservation</td>
</tr>
<tr>
<td>Grade 1B</td>
<td>strong recommendation, moderate quality evidence</td>
<td>RCTs with important limitations (inconsistent results, methodological flaws, indirect, or imprecise) or exceptionally strong evidence from observational studies</td>
<td>Strong recommendation, can apply to most patients in most circumstances without reservation</td>
</tr>
<tr>
<td>Grade 1C</td>
<td>strong recommendation, low-quality or very low-quality evidence</td>
<td>Observational studies or case series</td>
<td>Strong recommendation but may change when higher quality evidence becomes available</td>
</tr>
<tr>
<td>Grade 2A</td>
<td>weak recommendation, high quality evidence</td>
<td>RCTs without important limitations or overwhelming evidence from observational studies</td>
<td>Weak recommendation, best action may differ depending on circumstances or patients’ or societal values</td>
</tr>
<tr>
<td>Grade 2B</td>
<td>weak recommendation, moderate-quality evidence</td>
<td>RCTs with important limitations (inconsistent results, methodological flaws, indirect, or imprecise) or exceptionally strong evidence from observational studies</td>
<td>Weak recommendation, best action may differ depending on circumstances or patients’ or societal values</td>
</tr>
<tr>
<td>Grade 2C</td>
<td>weak recommendation, low-quality or very low-quality evidence</td>
<td>Observational studies or case series</td>
<td>Very weak recommendations; other alternatives may be equally reasonable</td>
</tr>
</tbody>
</table>

Hyperleukocytosis

- Hyperleukocytosis
 - White blood cell count $\geq 100,000/\mu\text{L}$.
 - Due to the presence of leukemia.
 - Extremely elevated counts can result in:
 - Hyperviscosity
 - Leukostasis
 - Tumor lysis syndrome
Hyperleukocytosis

- Complications of Leukostasis/Hyperviscosity
 - Hemorrhage
 - Pulmonary infarction
 - Alveolar capillary block
 - Cerebral hemorrhage
 - Retinal infarct
Hyperleukocytosis

- Complications of Tumor Lysis Syndrome
 - Hyperkalemia
 - Hyperphosphatemia
 - Hyperuricemia

- Results in disseminated intravascular coagulation and/or renal failure
Hyperleukocytosis

- Response to leukocytapheresis
 - Higher short-term mortality rates with WBC >100,000 compared to counts <50,000.
 - Leukocytapheresis can:
 - Lessen or reverse symptoms
 - Improve 2 to 3 week mortality
 - Does not affect long-term or overall survival
Hyperleukocytosis

- Course of apheresis therapy
 - 8 to 10 liters or 2 blood volumes processed
 - No correlation between reduction and survival
 - Resolution of symptoms the end-point of treatment
 - Concurrent chemotherapy MUST be initiated
 - More mature phenotype addition of HES may be necessary
Hyperleukocytosis

- Leukostasis/Hyperviscosity
 - ASFA Category - I
 - ASFA Recommendation Grade - 1B

- Prophylaxis
 - ASFA Category - III
 - ASFA Recommendation Grade - 2C

<table>
<thead>
<tr>
<th></th>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AML</td>
<td>0</td>
<td>5(385)</td>
<td>7(199)</td>
<td>10(12)</td>
</tr>
<tr>
<td>ALL</td>
<td>0</td>
<td>3(366)</td>
<td>3(39)</td>
<td>1</td>
</tr>
</tbody>
</table>
Thrombocytosis

• Platelet count $\geq 500,000/\mu L$
• May be primary (e.g. polycythemia vera) or secondary (e.g. splenectomy)
• Results in:
 • Hemorrhage - predominantly mucocutaneous
 • Thrombosis – microvascular and macrovascular
• Complications in:
 • 56% of primary causes
 • 4% of secondary causes
Thrombocytosis

Thrombosis

- Increasing age
- Previous thrombotic event
- Longer duration of thrombocytosis

Hemorrhage

- Platelet count $\geq 2,000,000/\mu$L
- NSAID ingestion
Thrombocytosis

- Response to thrombocytapheresis
 - No controlled trials have been performed.
 - Symptom improvement observed during treatment.
Thrombocytosis

- Course of apheresis therapy
 - 1 to 1.5 blood volumes processed or 3 hours.
 - No correlation between platelet count and complications
 - Resolution of symptoms the end-point of treatment
 - Concurrent chemotherapy MUST be initiated
Thrombocytosis

• Symptomatic
 • ASFA Category - II
 • ASFA Recommendation Grade - 2C

• Secondary or prophylactic
 • ASFA Category - III
 • ASFA Recommendation Grade - 2C

<table>
<thead>
<tr>
<th></th>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomatic</td>
<td>0</td>
<td>0</td>
<td>7(180)</td>
<td>24(29)</td>
</tr>
<tr>
<td>Prophylactic</td>
<td>0</td>
<td>0</td>
<td>2(39)</td>
<td>3(4)</td>
</tr>
</tbody>
</table>
Sickle Cell Anemia

- Incidence: 1 in 200 to 500 births in the US
- >60,000 African-Americans affected
- Autosomal recessive disorder

- Arisen in four separate locations
 - Africa
 - Middle East
 - Mediterranean basin
 - India

- Heterozygotes protected from *Plasmodium falciparum* malaria

Images from Ohio State University Parasite and Parasitology Resources (http://www.biosci.ohio-state.edu/~parasite/home.html)
Sickle Cell Anemia

- Single nucleotide substitution
- Glutamic acid to valine substitution
- Polymerization of Hb at low pO₂:
 - Vascular occlusion
 - Red cell membrane damage
 - Water loss and cell dehydration
 - K⁺ and Na⁺ leakage
 - Hemolysis
 - Increased expression of adhesion molecule receptors
- Cells are “sticky” increasing viscosity

Image from www.pathologystudent.com
Sickle Cell Anemia

- Acute Chest Syndrome
 - Fever, tachycardia, chest pain, leukocytosis, and pulmonary infiltrates
 - Cause found in 38% of patients
 - Pneumonia – 29%
 - Fat embolism – 9%
- 20 to 50% of patients with SCD
- 14 to 33% of all hospitalizations in SCD
- Progressive respiratory failure leading to death
Sickle Cell Anemia

• Priapism
 • 30 to 80% of male SCD patients
 • Associated with dehydration and hypoventilation
 • Sickling within the corpus cavernosa
 • May result in:
 • Stuttering - multiple episodes all less than 3 hours
 • Fulminant cases - lasting >6 hours
 • 25% will have erectile dysfunction
Sickle Cell Anemia

- Increased risk of acute chest syndrome, renal failure, stroke, and pain crisis with surgery.
 - Due to:
 - Hypoxia
 - Dehydration
 - Hypothermia
 - Acidosis

- Current anesthesiology practice minimizes these.
Sickle Cell Anemia

- **Red Cell Exchange**
 - Avoids hyperviscosity by replacing sticky HbS cells with normal cells.
 - Performed by manual or automated methods.
 - Automated method superior:
 - Shorter time involved
 - Greater efficiency of HbS reduction
Sickle Cell Anemia

• Indications for red cell exchange:
 • Cerebrovascular disease
 • Arterial hypoxemia syndrome
 • Acute chest syndrome
 • Priapism
 • Initiation of chronic transfusion
 • Preoperative preparation
 • Retinal arterial vaso-occlusion
 • Cerebral angiogram (using hyperosmotic contrast agents)
 • Hepatic failure
 • Septic shock
Sickle Cell Anemia

• Course of apheresis therapy
 • Goal is to remove HbS containing red blood cells and replace them.
 • Targets:
 • Hematocrit of 30%
 • <30% of the cells containing HbS
Sickle Cell Anemia

- Acute stroke
 - ASFA Category - I
 - ASFA Recommendation Grade - 1C
- Acute chest syndrome
 - ASFA Category - II
 - ASFA Recommendation Grade - 1C
- Prophylaxis for primary or secondary stroke
 - ASFA Category - II
 - ASFA Recommendation Grade - 1C
- Multi-organ failure
 - ASFA Category - III
 - ASFA Recommendation Grade - 2C
Sickle Cell Anemia

- Priapism
 - ASFA Category - III
 - ASFA Recommendation Grade - 1C
- Splenic sequestration
 - ASFA Category - III
 - ASFA Recommendation Grade - 2C
- Prophylaxis for vaso-occlusive pain crisis
 - ASFA Category - III
 - ASFA Recommendation Grade - 2C
- Pre-operative preparation
 - ASFA Category - III
 - ASFA Recommendation Grade - 2A
Sickle Cell Anemia

<table>
<thead>
<tr>
<th>Condition</th>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Stroke</td>
<td>0</td>
<td>1(52)</td>
<td>7(160)</td>
<td>8(10)</td>
</tr>
<tr>
<td>Acute Chest Syndrome</td>
<td>0</td>
<td>1(40)</td>
<td>13(145)</td>
<td>8</td>
</tr>
<tr>
<td>Priapism</td>
<td>0</td>
<td>0</td>
<td>1(5)</td>
<td>1</td>
</tr>
<tr>
<td>Multiorgan failure</td>
<td>0</td>
<td>0</td>
<td>3(10)</td>
<td>3</td>
</tr>
<tr>
<td>Hepatic sequestration</td>
<td>0</td>
<td>0</td>
<td>1(52)</td>
<td>3(4)</td>
</tr>
<tr>
<td>Splenic sequestration</td>
<td>0</td>
<td>0</td>
<td>3(204)</td>
<td>0</td>
</tr>
<tr>
<td>Stroke prophylaxis</td>
<td>1(130)</td>
<td>0</td>
<td>20(335)</td>
<td>3</td>
</tr>
<tr>
<td>Vaso-occlusive pain crisis</td>
<td>1(130)</td>
<td>1(21)</td>
<td>3(18)</td>
<td>1</td>
</tr>
<tr>
<td>Pre-operative management</td>
<td>3(1035)</td>
<td>4(184)</td>
<td>3(957)</td>
<td>0</td>
</tr>
</tbody>
</table>
Thrombotic Thrombocytopenic Purpura (TTP)

The “classic pentad”:

- Thrombocytopenia
- Microangiopathic hemolytic anemia
 - Schistocytes and an elevated LDH
- Neurologic dysfunction
- Fever
- Renal dysfunction
Thrombotic Thrombocytopenic Purpura (TTP)

Mechanism behind TTP

- Deficient ADAMTS13 activity.
- ADAMTS13 cleaves vWF into smaller multimers.
- Ultra-large vWF multimers bind to platelets via GPIb producing microthrombi.

Sadler J E Blood 2008;112:11-18
Thrombotic Thrombocytopenic Purpura (TTP)

- Plasma infusion:
 - Replaces the ADAMTS13

- Plasma exchange:
 - Removes the autoantibody
 - Removes the ultra-large vWF multimers
 - Replaces the ADAMTS13
Thrombotic Thrombocytopenic Purpura (TTP)

- Course of TPE therapy
 - 1 to 1.5 plasma volume exchanges with plasma
 - Cryopoor plasma indicated for refractory patients
 - Daily treatment until:
 - Platelet count >150,000/μL for two days
 - LDH near normal
 - Resolution of neurologic symptoms
 - Withdrawal versus tapering
Thrombotic Thrombocytopenic Purpura (TTP)

- ASFA Category - I
- ASFA Recommendation Grade – 1A

<table>
<thead>
<tr>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>7(301)</td>
<td>2(133)</td>
<td>26(980)</td>
<td>46(83)</td>
</tr>
</tbody>
</table>
Hyperviscosity in monoclonal gammopathies

- Viscosity determined: hematocrit, red blood cell aggregation, plasma protein levels, vasculature condition
- Hyperviscosity characterized by:
 - Mucous membrane bleeding
 - Retinopathy
 - Neurologic impairment
- Neurologic impairment:
 - Headache
 - Dizziness
 - Vertigo
 - Nystagmus
 - Hearing loss
 - Visual impairment
 - Somnolence
 - Coma
 - Seizures
- Other symptoms:
 - Congestive heart failure
 - Respiratory compromise
 - Fatigue
 - Peripheral polyneuropathy
 - Anorexia
Hyperviscosity in monoclonal gammopathies

• Most common in Waldenström’s macroglobulinemia

• Paraprotein levels:
 • IgM ≥ 3 g/dL
 • IgA ≥ 6 to 7 g/dL
 • IgG3 ≥ 4 g/dL

• Serum viscosity does NOT correlate with symptoms.
 • Normal: 1.4 to 1.8 Ostwald units
 • Some symptomatic as low as 3 or 4
 • Most symptomatic between 6 and 7
 • Some asymptomatic between 8 to 10
Hyperviscosity in monoclonal gammopathies

- Response to plasma exchange
 - Rapid improvement in neurologic symptoms
 - Length of response depends upon the rate of monoclonal protein production.
Hyperviscosity in monoclonal gammopathies

• Course of TPE therapy
 • 1 to 1.5 plasma volume exchanges with albumin
 • Daily treatment until acute symptoms resolve, usually 1 to 3 treatments
 • Relationship between serum viscosity and paraprotein levels is exponential
 • Small changes in concentration result in large changes viscosity
 • Concurrent chemotherapy MUST be initiated
Hyperviscosity in monoclonal gammopathies

- Symptomatic
 - ASFA Category - I
 - ASFA Recommendation Grade - 1B

- Prophylaxis prior to rituximab administration
 - ASFA Category - I
 - ASFA Recommendation Grade - 1C

<table>
<thead>
<tr>
<th></th>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomatic</td>
<td>0</td>
<td>3(46)</td>
<td>18(253)</td>
<td>12(12)</td>
</tr>
<tr>
<td>Prophylaxis</td>
<td>0</td>
<td>0</td>
<td>3(45)</td>
<td>2(2)</td>
</tr>
</tbody>
</table>
Acute Inflammatory Demyelinating Polyneuropathy (Guillain-Barré Syndrome)

• Incidence
 • 1-2/100,000

• Demographics
 • Male predominance
 • Increasing incidence with age (1/100,000 <30 versus 4/100,000 >75)

• Signs and Symptoms
 • Symmetrical muscle weakness and paresthesia that spread proximally
 • Progresses over 12 hours to 28 days
 • May involve respiratory and oropharyngeal muscles
 • 10 to 23% require ventilator assistance
 • Autonomic dysfunction may be present
Acute Inflammatory Demyelinating Polyneuropathy
(Guillain-Barré Syndrome)

• Associations
 • Infectious illness in weeks prior to onset in 75%
 • Campylobacter jejuni, CMV, EBV, varicella-zoster, Borrelia burgdorferi, Mycoplasma pneumoniae, HIV
 • Influenza vaccine

• Pathophysiology
 • Demyelination of peripheral neurons due to autoantibodies toward GM1, GD1a, GT1a, and GQ1b
 • Evidence of axonal damage in some patients involving motor and sensory neurons (AMSAN) or only motor neurons (AMAN)
Acute Inflammatory Demyelinating Polyneuropathy (Guillain-Barré Syndrome)

Normal nerve

Myelin

Axon

Anti-myelin antibodies
Acute Inflammatory Demyelinating Polyneuropathy (Guillain-Barré Syndrome)

• Treatment
 • Spontaneous recover
 • 66-75% residual deficits
 • Supportive care
 • IVIG
 • Plasma exchange
Acute Inflammatory Demyelinating Polyneuropathy (Guillain-Barré Syndrome)

• Response to plasma exchange
 • Cochrane database found 6 eligible trials enrolling 649 patients
 • Shorter time to recovery of walking, smaller percentage requiring artificial ventilation, shorter duration of ventilation, better muscle strength at 1 year, fewer severe deficits at 1 year
 • “First and only treatment proven superior to supportive care”
 • Second Cochrane database study found equivalence between TPE and IVIG though IVIG course more likely to be completed
 • Recent economic analysis found the costs of IVIG therapy to be twice that of TPE
Acute Inflammatory Demyelinating Polyneuropathy (Guillain-Barré Syndrome)

- Response to plasma exchange
 - Axonal involvement has been reported to be more responsive to TPE than IVIG
 - Retrospective studies suggest that TPE in the setting of failure to respond to IVIG has limited benefit

- Course of TPE therapy
 - 1 to 1.5 plasma volume exchanges with albumin as replacement
 - Mild AIDP – 2 TPE
 - Moderate to severe AIDP – 4 TPE
 - Greatest benefit if started within 7 days of symptom onset
Acute Inflammatory Demyelinating Polyneuropathy (Guillain-Barré Syndrome)

• AIDP
 • ASFA Category - I
 • ASFA Recommendation Grade – 1A

• AIDP after failure of IVIG
 • ASFA Category - III
 • ASFA Recommendation Grade – 2C

<table>
<thead>
<tr>
<th></th>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDP</td>
<td>19(1770)</td>
<td>0</td>
<td>9(369)</td>
<td>10(11)</td>
</tr>
<tr>
<td>After IVIG</td>
<td>0</td>
<td>0</td>
<td>1(46)</td>
<td>NA</td>
</tr>
</tbody>
</table>
Chronic Inflammatory Demyelinating Polyneuropathy

• Incidence
 • 1-2/100,000

• Demographics
 • Male predominance

• Signs and Symptoms
 • Symmetrical proximal and distal muscle weakness with or without numbness that progresses and relapses over two or more months
 • Pain in 42% of patients
 • NCV demonstrates slow conduction, conduction block, and prolonged latencies in more than 1 nerve
 • CSF demonstrates protein >55 mg/dL with cell count <10/µL
Chronic Inflammatory Demyelinating Polyneuropathy

• Associations
 • Hepatitis, inflammatory bowel disease, Hodgkin disease, connective tissue diseases, HIV, diabetes mellitus

• Pathophysiology
 • Inflammatory demyelination of peripheral nerves with secondary axonal degeneration
 • Both humoral and cell-mediated immune responses have been documented
 • Antibodies to myelin components GM1, P0, and MAG have been identified in some patients
Chronic Inflammatory Demyelinating Polyneuropathy

- Response to plasma exchange
 - Dyck – 29 patients randomized to shame versus TPE twice weekly for three weeks. Significantly better NCV testing and clinical improvement.
 - Hahn – 18 patients randomized to shame versus 10 TPE over 5 weeks followed by washout period and opposite therapy. 80% with substantial improvement. 66% relapsed within 1 to 2 weeks but responded to additional TPE.
 - Dyck – 20 patients randomized to IVIG versus TPE. Both with significant improvement but no difference between the two.
Chronic Inflammatory Demyelinating Polyneuropathy

• Course of TPE therapy
 • 1 to 1.5 plasma volume exchanges with albumin as replacement
 • 3 TPE per week for 2 weeks followed by 2 per week for 4 weeks.
 • Relapse occurs within 2 weeks of cessation but responds to additional TPE.
 • With relapse, maintenance therapy necessary with frequency adjusted to control symptoms.
Chronic Inflammatory Demyelinating Polyneuropathy

- ASFA Category - I
- ASFA Recommendation Grade – 1B

<table>
<thead>
<tr>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3(67)</td>
<td>0</td>
<td>31(1009)</td>
<td>31(32)</td>
</tr>
</tbody>
</table>
Myasthenia Gravis

• Incidence
 • 1/100,000

• Demographics
 • Most prevalent in 20 to 40 year-old women

• Signs and Symptoms
 • Weakness and fatigability with repetitive physical activity that improves with rest
 • Ptosis, diplopia, facial weakness, bulbar weakness, and limb weakness
 • Bulbar weakness associated with dysphagia, aspiration, and respiratory failure
Myasthenia Gravis

• Associations
 • Thymic pathology in 75%
 • 85% thymic hyperplasia
 • 15% tumor, predominantly thymoma

• Pathophysiology
 • Autoantibodies directed against acetylcholine receptors (AChR) or muscle-specific receptor tyrosine kinase (MuSK) on the postsynaptic motor end plate results in decreased number of AChR and decreased action potentials on stimulation
 • 80 to 90% of patients have IgG1 or IgG3 antibodies to AChR
 • 40 to 70% of “seronegative” cases have IgG4 antibodies to MuSK
 • MuSK recruits AChR binding proteins leading to AChR clustering and neuromuscular junction formation
Myasthenia Gravis

- Response to plasma exchange
 - 3 randomized controlled trials comparing TPE to IVIG have found equivalency
 - One comparison study of IVIG and TPE found IVIG to be more cost effective with a shorter length of hospital stay but patients in the study treated with TPE more likely to be on ventilator and have respiratory failure
 - Trials of routine TPE prior to thymectomy versus supportive care have shown equivalency
Myasthenia Gravis

- Course of TPE therapy
 - 1 to 1.5 plasma volume exchanges with albumin as replacement
 - 5 to 6 TPE daily or every-other-day
 - Mild exacerbations in stable patients can be treated with 2 to 3 TPE
 - Maintenance TPE at weekly intervals followed by weaning may be performed
Myasthenia Gravis

• MG moderate to severe
 • ASFA Category - I
 • ASFA Recommendation Grade – 1B

• MG pre-thymectomy
 • ASFA Category - I
 • ASFA Recommendation Grade – 1C

<table>
<thead>
<tr>
<th></th>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate - severe</td>
<td>8(279)</td>
<td>7(2802)</td>
<td>30(556)</td>
<td>NA</td>
</tr>
<tr>
<td>Pre-thymectomy</td>
<td>0</td>
<td>5(342)</td>
<td>2(51)</td>
<td>NA</td>
</tr>
</tbody>
</table>
Multiple Sclerosis

• Incidence
 • 5-30/100,000

• Demographics
 • Female predominance
 • Most common in Caucasians of Northern European ancestry
 • More common in temperate climates
 • Genetic predisposition

• Signs and Symptoms
 • Variety of neurologic symptoms resulting from multifocal demyelination of the central nervous system
 • Include fatigue, visual problems, bladder/bowel dysfunction, sensory changes, emotional changes, weakness, balance difficulty, cognitive changes, etc.
Multiple Sclerosis

- **Disease course**
 - 80 to 85% relapsing and remitting
 - Acute focal or multifocal inflammatory demyelination
 - Development of symptoms over days to weeks
 - Symptoms plateau in 1 to 2 weeks
 - Gradual recovery within 3 months
 - May take up to 6 to 12 months
 - 15% primary progressive
 - Chronic demyelination, axonal loss, and gliosis
 - Progression of disability from onset with no or only minor remissions or plateaus
Multiple Sclerosis

- Pathophysiology
 - T-cells and B-cells penetrate blood-brain barrier with injury to myelin and axons
 - Both cell mediated immunity and humoral immunity involved

Lucchinetti CF *Neurol Clin* 2005;23:77-105
Multiple Sclerosis

• Response to plasma exchange
 • Acute CNS demyelination unresponsive to steroids – Blinded trials have demonstrated moderate to marked improvement in 42% of patients. Case series have reported improvement in 37 to 100% of treated patients
 • Primary progressive MS – Meta-analysis of 6 prospective trials found decreased odds of worsening at 12 and 24 months and increased odds of improvement at 6 and 12 months
Multiple Sclerosis

• Course of TPE therapy
 • Acute CNS demyelination unresponsive to steroids
 • 1 to 1.5 plasma volume exchanges with albumin as replacement
 • 5 to 7 TPE over 14 days
 • Primary progressive MS
 • 1 to 1.5 plasma volume exchanges with albumin as replacement
 • Weekly long-term therapy with tapering as tolerated
Multiple Sclerosis

- Acute CNS demyelination unresponsive to steroids
 - ASFA Category – II
 - ASFA Recommendation Grade – 1B

- Primary progressive
 - ASFA Category – III
 - ASFA Recommendation Grade – 2B

<table>
<thead>
<tr>
<th></th>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute CNS demyelination</td>
<td>3(306)</td>
<td>1(41)</td>
<td>7(86)</td>
<td>5(5)</td>
</tr>
<tr>
<td>Primary progressive</td>
<td>7(285)</td>
<td>0</td>
<td>10(165)</td>
<td>3(4)</td>
</tr>
</tbody>
</table>
Anti-Basement Membrane Disease

- Anti-basement membrane disease (Goodpasture’s syndrome)
- Autoantibody to the c terminus of \(\alpha_3 \) chain of type IV collagen
 - Restricted to glomerular and alveolar basement membrane
- Results in complement mediated damage to these membranes producing:
 - Glomerulonephritis
 - Alveolar hemorrhage
Anti-Basement Membrane Disease

- Response to plasma exchange
 - More rapid decline in anti-basement membrane antibody titers
 - Lower serum creatinine levels
 - Fewer patients progressing to renal failure
 - Decreased mortality (40% versus 85%)
Anti-Basement Membrane Disease

Plasma exchange should be instituted early!!!

- Recovery correlates with a serum creatinine of <5 mg/dl and <50% crescents on biopsy
- Recovery infrequent with plasma exchange if:
 - Oliguric
 - Serum creatinine > 6.8 mg/dl
 - Dialysis required at presentation
- Reserve plasma exchange for pulmonary hemorrhage in patients unlikely to respond
Anti-Basement Membrane Disease

• Course of TPE therapy
 • 1 to 1.5 plasma volumes exchange with albumin
 • Daily for 7 to 14 days following:
 • Urine output
 • Serum creatinine
 • Anti-GBM titers
 • Concurrent chemotherapy MUST be initiated
Anti-Basement Membrane Disease

- **Dialysis independent**
 - ASFA Category - I
 - ASFA Recommendation Grade - 1B
- **Diffuse alveolar hemorrhage**
 - ASFA Category - I
 - ASFA Recommendation Grade - 1C
- **Dialysis dependent**
 - ASFA Category - III
 - ASFA Recommendation Grade - 2B

<table>
<thead>
<tr>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(17)</td>
<td>0</td>
<td>17(430)</td>
<td>19</td>
</tr>
</tbody>
</table>
ANCA Associated Rapidly Progressive Glomerulonephritis

- 40% of patients with RPGN - Wegner’s granulomatosis, polyarteritis nodosa, or “renal-limited” pauci-immune glomerulonephritis
- 80% progress to end-stage renal disease
ANCA Associated Rapidly Progressive Glomerulonephritis

• Response to plasma exchange
 • No statistically significant difference in renal outcome in mild RPGN!
 • No difference in mean serum creatinine, changes in creatinine values, dialysis dependency
 • Effective adjuvant therapy for severe disease as defined by dialysis dependency or creatinine > 9 mg/dl!
 • Discontinuation of dialysis or decrease in serum creatinine by at least 50% has been seen in these patients
ANCA Associated Rapidly Progressive Glomerulonephritis

• Course of TPE therapy
 • 1 to 1.5 plasma volume exchange with albumin
 • 7 exchanges per week following:
 • Urine output
 • Serum creatinine
 • ANCA titers (?)
• Concurrent chemotherapy MUST be initiated
ANCA Associated Rapidly Progressive Glomerulonephritis

- Dialysis independent
 - ASFA Category - III
 - ASFA Recommendation Grade - 2C
- Diffuse alveolar hemorrhage
 - ASFA Category - I
 - ASFA Recommendation Grade - 1C
- Dialysis dependent
 - ASFA Category - I
 - ASFA Recommendation grade - 1A

<table>
<thead>
<tr>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>8(296)</td>
<td>1(26)</td>
<td>22(347)</td>
<td>NA</td>
</tr>
</tbody>
</table>
Questions?