A Liquid Calcium+Vitamin D Supplement is Effective Prophylaxis Against Hypocalcemic Toxicity During Apheresis Platelet Donation

Robert Weinstein, Yong (David) Zhao, Mindy Greene, Amie Simard, Michelle Vauthrin, Linda Welch, Jeanne Linden, Jeffrey A. Bailey, Patricia St. Pierre, Molly Graves, Elda Hickson, Paula Sulmasy, Paula Ducharme, Stefanie Haynes

Transfusion Medicine & Apheresis Service
Division of Transfusion Medicine
UMass Memorial Medical Center
University of Massachusetts Medical School
Worcester, MA USA
Dr. Weinstein has no conflicts of interest, financial or otherwise.
Hypocalcemic ("Citrate") Toxicity in Apheresis Platelet Donors

- Most common adverse effect of platelet apheresis
- Citrated plasma returned to donor: ↓ plasma [Ca$^{2+}$]
- Oral CaCO$_3$ to alleviate symptoms
- Prophylactic oral CaCO$_3$ at start of collection
 - Modest protection of [Ca$^{2+}$] level
 - No overall impact on occurrence of symptoms
- Repeat prophylactic dosing? Another oral calcium salt?

Bolan CD et al. Transfusion 2003;43:1403-13
Bolan CD et al. Transfusion 2003;43:1414-22
“Effect of Oral Calcium Supplementation on Plasma [Ca$^{2+}$] and Hypocalcemic Toxicity During Platelet Donation”

- **Study approved by UMass Medical School IRB**
 - Cohort A: no prophylactic calcium
 - intervention with CaCO$_3$ for symptoms only
 - Cohort B: Prophylactic CaCO$_3$
 - TUMS® (GlaxoSmithKline, Brentford, Middlesex, UK)
 - 1000 mg per dose
 - Cohort C: Prophylactic Ca$_3$(C$_6$H$_5$O$_7$)$_2$/Ca$_3$(PO$_4$)$_2$, Vit D$_3$
 - Wellesse® Calcium & Vit D$_3$ Liquid (Botanical Labs, Ferndale, WA)
 - $\frac{2}{3}$ Ca$_3$(C$_6$H$_5$O$_7$)$_2$, $\frac{1}{3}$ Ca$_3$(PO$_4$)$_2$
 - 1000 mg Ca & 1000 IU Vit D$_3$ per dose

- **Platelets collected with Trima Accel®**
Experimental Protocol
(During Apheresis Platelet Collection)

Outcome Measures: Change in $[Ca^{2+}]$ from baseline. Symptoms of hypocalcemic toxicity.

Hypocalcemic Toxicity: At minimum, a persistent and uncomfortable metallic taste and/or acral or perioral paraesthesias.
Measurement of Plasma $[\text{Ca}^{2+}]$ by Fingerstick Blood Sample

- iSTAT® System point-of-care blood analyzer
 - CG8+ cartridge
 - 95 µL blood sample
- Unistick 3 Comfort Lancet
- Natelson heparinized blood collection tubes (0.2 mL)
[Ca$^{2+}$] Equivalent in Capillary (Fingerstick) Blood and Venous (Antecubital) Blood

*Mann-Whitney Rank Sum Test

$p=0.543$
Plasma Ionized Calcium During Apheresis Platelet Donation

No Prophylactic Calcium

CaCO$_3$

$\text{Ca}_3(\text{C}_6\text{H}_5\text{O}_7)_2/\text{Ca}_3(\text{PO}_4)_2$

Reference range: 4.5-5.3 mg/dL

- **Avg Start**
- **Avg Mid**
- **Avg End**

** Platelet Donor Management Strategy

- $p<0.05$
- $p<0.05$
- $p<0.05$
- $p<0.05$
- $p<0.05$
- $p<0.05$

Values:

- No Prophylactic Calcium: $-18.1 \pm 4.3\%$
- CaCO$_3$: $-19.6 \pm 3.9\%$
- $\text{Ca}_3(\text{C}_6\text{H}_5\text{O}_7)_2/\text{Ca}_3(\text{PO}_4)_2$: $-24.5 \pm 6.1\%$

- Reference range: 4.5-5.3 mg/dL
Lower Rate of Hypocalcemic Toxicity with Liquid Ca/Vit D Prophylaxis

<table>
<thead>
<tr>
<th>Cohort</th>
<th>n</th>
<th>Hypocalcemic Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>A</td>
<td>25</td>
<td>12 48%</td>
</tr>
<tr>
<td>No Prophylactic Calcium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>6 60%</td>
</tr>
<tr>
<td>CaCO₃ 1000 mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>26</td>
<td>5 19%</td>
</tr>
<tr>
<td>Ca₃(C₆H₅O₇)₂ (67%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca₃(PO₄)₂ (33%)</td>
<td>1000 mg</td>
<td></td>
</tr>
<tr>
<td>Vitamin D₃ 1000 IU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p=0.711 *p=0.039 *p=0.040

*Fisher Exact Test
Comparison of Characteristics of Cohorts A, B and C

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Weight (kg) (mean ± SD)</th>
<th>Blood volume (mL) (mean ± SD)</th>
<th>Age (yr) (mean ± SD)</th>
<th>**p<0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>85.6 ± 1834</td>
<td>5361 ± 870</td>
<td>53.9 ± 13.8</td>
<td>‡ ‡</td>
</tr>
<tr>
<td>B</td>
<td>86.8 ± 19.8</td>
<td>5386 ± 908</td>
<td>51.4 ± 10.4</td>
<td>‡ §</td>
</tr>
<tr>
<td>C</td>
<td>83.3 ± 16.1</td>
<td>5192 ± 765</td>
<td>62.7 ± 8.9</td>
<td>‡ §</td>
</tr>
<tr>
<td></td>
<td>*p=0.935</td>
<td>*p=0.819</td>
<td>*p=0.007</td>
<td></td>
</tr>
</tbody>
</table>

*Kruskal-Wallis One Way Analysis of Variance on Ranks

**Dunn’s Pairwise Multiple Comparison Procedure: ‡ = no; § = yes
Age Range Not a Factor in the Occurrence of Hypocalcemic Toxicity

| Study Subjects Reporting Symptoms of Hypocalcemic Toxicity: Sorted by Age Range |
|---------------------------------|-----------------|-----------------|-----------------|
| Age | Male | Female | Overall |
| > 50 years | 12 of 7 (32.4%) | 6 of 12 (50%) | 18 of 49 (36.7%)|
| ≤ 50 years | 3 of 7 (42.9%) | 2 of 5 (40%) | 5 of 12 (41.7%) |

Comparison of age ranges by Fisher Exact Test

\[p = 0.675 \quad p = 1.000 \quad p = 0.751 \]
Why Would Calcium Citrate be More Effective Prophylaxis than Calcium Carbonate?

• Absorption: calcium citrate > calcium carbonate
• Liquid supplement versus solid wafers
• Vitamin D₃ to enhance GI absorption
• Dissociation of plasma [Ca²⁺] from symptoms.
 – Symptoms prevented or alleviated without rise in [Ca²⁺]
 – Placebo effect of supplemental calcium?
 –
[Ca^2+] vs Citrate Accumulation During Platelet Donation

Time (minutes)

25 Platelet Donors

Total Blood Volume (L) ACD-A (mL/min)
- 4.0 ± 0.3 5.0 ± 0.4
- 4.5 ± 0.4 5.8 ± 0.05
- 5.0 ± 0.4 6.6 ± 0.5

10 mL of 10% CaGlu IV over 15 minutes

Summary & Conclusions

• Liquid CaCit/CaPhos + Vit D₃
 – Prevents symptoms of hypocalcemic toxicity
 – More effective than calcium carbonate

• Can the regimen be further improved?
 – Dose? Frequency of dosing?
 – Other oral calcium supplements (glutarate, gluconate)?

• Effect on bone metabolism?

• Point-of-Care test for [Ca²⁺]
 – Monitor donors
 – Evaluate Ca+D formulations
Division of Transfusion Medicine

Thank You!