Apheresis Review Session
Clinical Applications: Therapeutics

Jeffrey L. Winters, M.D.
Division of Transfusion Medicine

American Society for Apheresis 2017 Annual Meeting
Fort Lauderdale, Florida
ASFA Categories

Indications for Therapeutic Apheresis – ASFA 2016 Categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Disorders for which apheresis is accepted as first-line therapy, either as a primary standalone treatment or in conjunction with other modes of treatment.</td>
</tr>
<tr>
<td>II</td>
<td>Disorders for which apheresis is accepted as second-line therapy, either as a standalone treatment or in conjunction with other modes of treatment.</td>
</tr>
<tr>
<td>III</td>
<td>Optimum role of apheresis therapy is not established. Decision making should be individualized.</td>
</tr>
<tr>
<td>IV</td>
<td>Disorders in which published evidence demonstrates or suggests apheresis to be ineffective or harmful. IRB approval is desirable if apheresis treatment is undertaken in these circumstances.</td>
</tr>
</tbody>
</table>

Recommendation Grades

Grading recommendations adopted from Guyatt et al

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Description</th>
<th>Methodological Quality of Supporting Evidence</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1A</td>
<td>strong recommendation, high-quality evidence</td>
<td>RCTs without important limitations or overwhelming evidence from observational studies</td>
<td>Strong recommendation, can apply to most patients in most circumstances without reservation</td>
</tr>
<tr>
<td>Grade 1B</td>
<td>strong recommendation, moderate quality evidence</td>
<td>RCTs with important limitations (inconsistent results, methodological flaws, indirect, or imprecise) or exceptionally strong evidence from observational studies</td>
<td>Strong recommendation, can apply to most patients in most circumstances without reservation</td>
</tr>
<tr>
<td>Grade 1C</td>
<td>strong recommendation, low-quality or very low-quality evidence</td>
<td>Observational studies or case series</td>
<td>Strong recommendation but may change when higher quality evidence becomes available</td>
</tr>
<tr>
<td>Grade 2A</td>
<td>weak recommendation, high quality evidence</td>
<td>RCTs without important limitations or overwhelming evidence from observational studies</td>
<td>Weak recommendation, best action may differ depending on circumstances or patients’ or societal values</td>
</tr>
<tr>
<td>Grade 2B</td>
<td>weak recommendation, moderate-quality evidence</td>
<td>RCTs with important limitations (inconsistent results, methodological flaws, indirect, or imprecise) or exceptionally strong evidence from observational studies</td>
<td>Weak recommendation, best action may differ depending on circumstances or patients’ or societal values</td>
</tr>
<tr>
<td>Grade 2C</td>
<td>weak recommendation, low-quality or very low-quality evidence</td>
<td>Observational studies or case series</td>
<td>Very weak recommendations; other alternatives may be equally reasonable</td>
</tr>
</tbody>
</table>

Hyperleukocytosis

- Hyperleukocytosis
 - White blood cell count $\geq 100,000/\mu L$.
 - Due to the presence of leukemia.
 - Extremely elevated counts can result in:
 - Hyperviscosity
 - Leukostasis
 - Tumor lysis syndrome
Hyperleukocytosis

- Complications of Leukostasis/Hyperviscosity
 - Hemorrhage
 - Pulmonary infarction
 - Alveolar capillary block
 - Cerebral hemorrhage
 - Retinal infarct
Hyperleukocytosis

• Complications of Tumor Lysis Syndrome
 • Hyperkalemia
 • Hyperphosphatemia
 • Hyperuricemia

• Results in disseminated intravascular coagulation and/or renal failure
Hyperleukocytosis

• Response to leukocytapheresis
 • Higher short-term mortality rates with WBC >100,000 compared to counts <50,000.
 • Leukocytapheresis can:
 • Lessen or reverse symptoms
 • Improve 2 to 3 week mortality
 • Does not affect long-term or overall survival
Hyperleukocytosis

- Course of apheresis therapy
 - 8 to 10 liters or 2 blood volumes processed
 - No correlation between reduction and survival
 - Resolution of symptoms the end-point of treatment
- Concurrent chemotherapy MUST be initiated
- More mature phenotype addition of HES may be necessary
Hyperleukocytosis

• Symptomatic
 • ASFA Category - II
 • ASFA Recommendation Grade - 1B

• Prophylaxis
 • ASFA Category - III
 • ASFA Recommendation Grade - 2C

<table>
<thead>
<tr>
<th></th>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AML</td>
<td>0</td>
<td>6(437)</td>
<td>16(473)</td>
<td>14(16)</td>
</tr>
<tr>
<td>ALL</td>
<td>0</td>
<td>3(366)</td>
<td>6(57)</td>
<td>2(2)</td>
</tr>
</tbody>
</table>
Thrombocytosis

- Platelet count $\geq 500,000/\mu L$
- May be primary (e.g. polycythemia vera) or secondary (e.g. splenectomy)
- Results in:
 - Hemorrhage - predominantly mucocutaneous
 - Thrombosis – microvascular and macrovascular
- Complications in:
 - 56% of primary causes
 - 4% of secondary causes
Thrombocytosis

<table>
<thead>
<tr>
<th>Thrombosis</th>
<th>Increasing age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Previous thrombotic event</td>
</tr>
<tr>
<td></td>
<td>Longer duration of thrombocytosis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hemorrhage</th>
<th>Platelet count >2,000,000/µL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NSAID ingestion</td>
</tr>
</tbody>
</table>
Thrombocytosis

• Response to thrombocytapheresis
 • No controlled trials have been performed.
 • Symptom improvement observed during treatment.
Thrombocytosis

- Course of apheresis therapy
 - 1 to 1.5 blood volumes processed or 3 hours.
 - No correlation between platelet count and complications
 - Resolution of symptoms the end-point of treatment
 - Concurrent chemotherapy MUST be initiated
Thrombocytosis

- **Symptomatic**
 - ASFA Category - II
 - ASFA Recommendation Grade - 2C
- **Secondary or prophylactic**
 - ASFA Category - III
 - ASFA Recommendation Grade - 2C

<table>
<thead>
<tr>
<th></th>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomatic</td>
<td>0</td>
<td>0</td>
<td>7(180)</td>
<td>25(30)</td>
</tr>
<tr>
<td>Prophylactic</td>
<td>0</td>
<td>0</td>
<td>2(39)</td>
<td>3(4)</td>
</tr>
</tbody>
</table>
Sickle Cell Anemia

• Incidence: 1 in 200 to 500 births in the US
• >60,000 African-Americans affected
• Autosomal recessive disorder

• Arisen in four separate locations
 • Africa
 • Middle East
 • Mediterranean basin
 • India

• Heterozygotes protected from *Plasmodium falciparum* malaria

Images from Ohio State University Parasite and Parasitology Resources
(http://www.biosci.ohio-state.edu/~parasite/home.html)
Sickle Cell Anemia

• Single nucleotide substitution
• Glutamic acid to valine substitution
• Polymerization of Hb at low pO₂:
 • Vascular occlusion
 • Red cell membrane damage
 • Water loss and cell dehydration
 • K⁺ and Na⁺ leakage
 • Hemolysis
 • Increased expression of adhesion molecule receptors
• Cells are “sticky” increasing viscosity

Image from www.pathologystudent.com
Sickle Cell Anemia

- **Acute Chest Syndrome**
 - Fever, tachycardia, chest pain, leukocytosis, and pulmonary infiltrates
 - Cause found in 38% of patients
 - Pneumonia – 29%
 - Fat embolism – 9%
- 20 to 50% of patients with SCD
- 14 to 33% of all hospitalizations in SCD
- Progressive respiratory failure leading to death
Sickle Cell Anemia

- Priapism
 - 30 to 80% of male SCD patients
 - Associated with dehydration and hypoventilation
 - Sickling within the corpus cavernosa
 - May result in:
 - Stuttering - multiple episodes all less than 3 hours
 - Fulminant cases - lasting >6 hours
 - 25% will have erectile dysfunction
Sickle Cell Anemia

• Increased risk of acute chest syndrome, renal failure, stroke, and pain crisis with surgery.
 • Due to:
 • Hypoxia
 • Dehydration
 • Hypothermia
 • Acidosis

• Current anesthesiology practice minimizes these.
Sickle Cell Anemia

• Red Cell Exchange
 • Avoids hyperviscosity by replacing sticky HbS cells with normal cells.
 • Performed by manual or automated methods.
 • Automated method superior:
 • Shorter time involved
 • Greater efficiency of HbS reduction
Sickle Cell Anemia

- Indications for red cell exchange:
 - Cerebrovascular disease
 - Arterial hypoxemia syndrome
 - Acute chest syndrome
 - Priapism
 - Initiation of chronic transfusion
 - Preoperative preparation
 - Retinal arterial vaso-occlusion
 - Cerebral angiogram (using hyperosmotic contrast agents)
 - Hepatic failure
 - Septic shock
Sickle Cell Anemia

• Course of apheresis therapy
 • Goal is to remove HbS containing red blood cells and replace them.
 • Targets:
 • Hematocrit of 30%
 • <30% of the cells containing HbS
Sickle Cell Anemia

- **Acute stroke**
 - ASFA Category - I
 - ASFA Recommendation Grade - 1C

- **Acute chest syndrome**
 - ASFA Category - II
 - ASFA Recommendation Grade - 1C

- **Prophylaxis for stroke**
 - ASFA Category - I
 - ASFA Recommendation Grade – 1A

- **Multi-organ failure**
 - ASFA Category - III
 - ASFA Recommendation Grade - 2C
Sickle Cell Anemia

• Priapism
 • ASFA Category - III
 • ASFA Recommendation Grade - 2C

• Splenic sequestration
 • ASFA Category - III
 • ASFA Recommendation Grade - 2C

• Recurrent vaso-occlusive pain crisis
 • ASFA Category - III
 • ASFA Recommendation Grade - 2C

• Pre-operative preparation
 • ASFA Category - III
 • ASFA Recommendation Grade - 2A
Sickle Cell Anemia

<table>
<thead>
<tr>
<th>Condition</th>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Stroke</td>
<td>0</td>
<td>1(52)</td>
<td>7(160)</td>
<td>8(10)</td>
</tr>
<tr>
<td>Acute Chest Syndrome</td>
<td>0</td>
<td>2(121)</td>
<td>13(145)</td>
<td>8</td>
</tr>
<tr>
<td>Priapism</td>
<td>0</td>
<td>0</td>
<td>1(5)</td>
<td>1</td>
</tr>
<tr>
<td>Multiorgan failure</td>
<td>0</td>
<td>0</td>
<td>3(10)</td>
<td>3</td>
</tr>
<tr>
<td>Hepatic sequestration</td>
<td>0</td>
<td>0</td>
<td>1(52)</td>
<td>3(4)</td>
</tr>
<tr>
<td>Splenic sequestration</td>
<td>0</td>
<td>0</td>
<td>3(204)</td>
<td>0</td>
</tr>
<tr>
<td>Stroke prophylaxis</td>
<td>2(326)</td>
<td>1(36)</td>
<td>20(335)</td>
<td>3</td>
</tr>
<tr>
<td>Vaso-occlusive pain crisis</td>
<td>1(130)</td>
<td>1(21)</td>
<td>3(18)</td>
<td>1</td>
</tr>
<tr>
<td>Pre-operative management</td>
<td>3(1035)</td>
<td>4(184)</td>
<td>3(957)</td>
<td>0</td>
</tr>
</tbody>
</table>
Thrombotic Thrombocytopenic Purpura (TTP)

The “classic pentad”:

- Thrombocytopenia
- Microangiopathic hemolytic anemia
 - Schistocytes and an elevated LDH
- Neurologic dysfunction
- Fever
- Renal dysfunction
Thrombotic Thrombocytopenic Purpura (TTP)

Mechanism behind TTP

• Deficient ADAMTS13 activity.

• ADAMTS13 cleaves vWF into smaller multimers.

• Ultra-large vWF multimers bind to platelets via GPIb producing microthrombi.

Sadler J E Blood 2008;112:11-18
Thrombotic Thrombocytopenic Purpura (TTP)

- Plasma infusion:
 - Replaces the ADAMTS13

- Plasma exchange:
 - Removes the autoantibody
 - Removes the ultra-large vWF multimers
 - Replaces the ADAMTS13
Thrombotic Thrombocytopenic Purpura (TTP)

- Course of TPE therapy
 - 1 to 1.5 plasma volume exchanges with plasma
 - Cryopoor plasma indicated for refractory patients
 - Daily treatment until:
 - Platelet count $>150,000/\mu L$ for two days
 - LDH near normal
 - Resolution of neurologic symptoms
 - Withdrawal versus tapering
Thrombotic Thrombocytopenic Purpura (TTP)

- ASFA Category - I
- ASFA Recommendation Grade – 1A

<table>
<thead>
<tr>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>7(301)</td>
<td>2(133)</td>
<td>38(1541)</td>
<td>NA</td>
</tr>
</tbody>
</table>
Hyperviscosity in monoclonal gammopathies

- Viscosity determined: hematocrit, red blood cell aggregation, plasma protein levels, vasculature condition
- Hyperviscosity characterized by:
 - Mucous membrane bleeding
 - Retinopathy
 - Neurologic impairment

- Neurologic impairment:
 - Headache
 - Dizziness
 - Vertigo
 - Nystagmus
 - Hearing loss
 - Visual impairment
 - Somnolence
 - Coma
 - Seizures

- Other symptoms:
 - Congestive heart failure
 - Respiratory compromise
 - Fatigue
 - Peripheral polyneuropathy
 - Anorexia
Hyperviscosity in monoclonal gammopathies

• Most common in Waldenström’s macroglobulinemia

• Paraprotein levels:
 • IgM >3g/dL
 • IgA >6 to 7 g/dL
 • IgG3 >4 g/dL

• Serum viscosity does NOT correlate with symptoms.
 • Normal: 1.4 to 1.8 Ostwald units
 • Some symptomatic as low as 3 or 4
 • Most symptomatic between 6 and 7
 • Some asymptomatic between 8 to 10
Hyperviscosity in monoclonal gammopathies

- Response to plasma exchange
 - Rapid improvement in neurologic symptoms
 - Length of response depends upon the rate of monoclonal protein production.
Hyperviscosity in monoclonal gammopathies

- Course of TPE therapy
 - 1 to 1.5 plasma volume exchanges with albumin
 - Daily treatment until acute symptoms resolve, usually 1 to 3 treatments
 - Relationship between serum viscosity and paraprotein levels is exponential
 - Small changes in concentration result in large changes in viscosity
 - Concurrent chemotherapy MUST be initiated
Hyperviscosity in monoclonal gammopathies

• Symptomatic
 • ASFA Category - I
 • ASFA Recommendation Grade - 1B
• Prophylaxis prior to rituximab administration
 • ASFA Category - I
 • ASFA Recommendation Grade - 1C

<table>
<thead>
<tr>
<th></th>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomatic</td>
<td>0</td>
<td>3(46)</td>
<td>18(263)</td>
<td>NA</td>
</tr>
<tr>
<td>Prophylaxis for rituximab</td>
<td>0</td>
<td>0</td>
<td>3(45)</td>
<td>2(2)</td>
</tr>
</tbody>
</table>
Acute Inflammatory Demyelinating Polyneuropathy (Guillain-Barré Syndrome)

• Incidence
 • 1-2/100,000

• Demographics
 • Male predominance
 • Increasing incidence with age (1/100,000 <30 versus 4/100,000 >75)

• Signs and Symptoms
 • Symmetrical muscle weakness and paresthesia that spread proximally
 • Progresses over 12 hours to 28 days
 • May involve respiratory and oropharyngeal muscles
 • 10 to 23% require ventilator assistance
 • Autonomic dysfunction may be present
Acute Inflammatory Demyelinating Polyneuropathy (Guillain-Barré Syndrome)

- **Associations**
 - Infectious illness in weeks prior to onset in 75%
 - *Campylobacter jejuni, CMV, EBV, varicella-zoster, Borrelia burgdorferi, Mycoplasma pneumoniae, HIV*
 - Influenza vaccine

- **Pathophysiology**
 - Demyelination of peripheral neurons due to autoantibodies toward GM1, GD1a, GT1a, and GQ1b
 - Evidence of axonal damage in some patients involving motor and sensory neurons (AMSAN) or only motor neurons (AMAN)
Acute Inflammatory Demyelinating Polyneuropathy (Guillain-Barré Syndrome)
Acute Inflammatory Demyelinating Polyneuropathy (Guillain-Barré Syndrome)

- Treatment
 - Spontaneous recovery
 - 66-75% residual deficits
 - Supportive care
 - IVIG
 - Plasma exchange
Acute Inflammatory Demyelinating Polyneuropathy (Guillain-Barré Syndrome)

- Response to plasma exchange
 - Cochrane database found 6 eligible trials enrolling 649 patients
 - Shorter time to recovery of walking, smaller percentage requiring artificial ventilation, shorter duration of ventilation, better muscle strength at 1 year, fewer severe deficits at 1 year
 - “First and only treatment proven superior to supportive care”
 - Second Cochrane database study found equivalence between TPE and IVIG though IVIG course more likely to be completed
 - Recent economic analysis found the costs of IVIG therapy to be twice that of TPE
Acute Inflammatory Demyelinating Polyneuropathy
(Guillain-Barré Syndrome)

• Response to plasma exchange
 • Axonal involvement has been reported to be more responsive to TPE than IVIG
 • Retrospective studies suggest that TPE in the setting of failure to respond to IVIG has limited benefit

• Course of TPE therapy
 • 1 to 1.5 plasma volume exchanges with albumin as replacement
 • Mild AIDP – 2 TPE
 • Moderate to severe AIDP – 4 TPE
 • Greatest benefit if started within 7 days of symptom onset
Acute Inflammatory Demyelinating Polyneuropathy (Guillain-Barré Syndrome)

- **AIDP**
 - ASFA Category - I
 - ASFA Recommendation Grade – 1A

- **AIDP after failure of IVIG**
 - ASFA Category - III
 - ASFA Recommendation Grade – 2C

<table>
<thead>
<tr>
<th></th>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDP</td>
<td>19(1770)</td>
<td>0</td>
<td>9(369)</td>
<td>NA</td>
</tr>
<tr>
<td>After IVIG</td>
<td>0</td>
<td>0</td>
<td>1(46)</td>
<td>NA</td>
</tr>
</tbody>
</table>
Chronic Inflammatory Demyelinating Polyneuropathy

• Incidence
 • 1-2/100,000

• Demographics
 • Male predominance

• Signs and Symptoms
 • Symmetrical proximal and distal muscle weakness with or without numbness that progresses and relapses over two or more months
 • Pain in 42% of patients
 • NCV demonstrates slow conduction, conduction block, and prolonged latencies in more than 1 nerve
 • CSF demonstrates protein >55 mg/dL with cell count <10/µL
Chronic Inflammatory Demyelinating Polyneuropathy

• Associations
 • Hepatitis, inflammatory bowel disease, Hodgkin disease, connective tissue diseases, HIV, diabetes mellitus

• Pathophysiology
 • Inflammatory demyelination of peripheral nerves with secondary axonal degeneration
 • Both humoral and cell-mediated immune responses have been documented
 • Antibodies to myelin components GM1, P0, and MAG have been identified in some patients
Chronic Inflammatory Demyelinating Polyneuropathy

- Response to plasma exchange
 - Dyck – 29 patients randomized to shame versus TPE twice weekly for three weeks. Significantly better NCV testing and clinical improvement.
 - Hahn – 18 patients randomized to shame versus 10 TPE over 5 weeks followed by washout period and opposite therapy. 80% with substantial improvement. 66% relapsed within 1 to 2 weeks but responded to additional TPE.
 - Dyck – 20 patients randomized to IVIG versus TPE. Both with significant improvement but no difference between the two.
Chronic Inflammatory Demyelinating Polyneuropathy

- Course of TPE therapy
 - 1 to 1.5 plasma volume exchanges with albumin as replacement
 - 3 TPE per week for 2 weeks followed by 2 per week for 4 weeks.
 - Relapse occurs within 2 weeks of cessation but responds to additional TPE.
 - With relapse, maintenance therapy necessary with frequency adjusted to control symptoms.
Chronic Inflammatory Demyelinating Polyneuropathy

- ASFA Category - I
- ASFA Recommendation Grade – 1B

<table>
<thead>
<tr>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3(67)</td>
<td>0</td>
<td>32(1021)</td>
<td>31(32)</td>
</tr>
</tbody>
</table>
Myasthenia Gravis

• Incidence
 • 1/100,000

• Demographics
 • Most prevalent in 20 to 40 year-old women

• Signs and Symptoms
 • Weakness and fatigability with repetitive physical activity that improves with rest
 • Ptosis, diplopia, facial weakness, bulbar weakness, and limb weakness
 • Bulbar weakness associated with dysphagia, aspiration, and respiratory failure
Myasthenia Gravis

• Associations
 • Thymic pathology in 75%
 • 85% thymic hyperplasia
 • 15% tumor, predominantly thymoma

• Pathophysiology
 • Autoantibodies directed against acetylcholine receptors (AChR) or muscle-specific receptor tyrosine kinase (MuSK) on the postsynaptic motor end plate results in decreased number of AChR and decreased action potentials on stimulation
 • 80 to 90% of patients have IgG1 or IgG3 antibodies to AChR
 • 40 to 70% of “seronegative” cases have IgG4 antibodies to MuSK
 • MuSK recruits AChR binding proteins leading to AChR clustering and neuromuscular junction formation
Myasthenia Gravis

• Response to plasma exchange
 • 3 randomized controlled trials comparing TPE to IVIG have found equivalency
 • One comparison study of IVIG and TPE found IVIG to be more cost effective with a shorter length of hospital stay but patients in the study treated with TPE more likely to be on ventilator and have respiratory failure
 • Trials of routine TPE prior to thymectomy versus supportive care have shown equivalency
Myasthenia Gravis

• Course of TPE therapy
 • 1 to 1.5 plasma volume exchanges with albumin as replacement
 • 5 to 6 TPE daily or every-other-day
 • Mild exacerbations in stable patients can be treated with 2 to 3 TPE
 • Maintenance TPE at weekly intervals followed by weaning may be performed
Myasthenia Gravis

• MG moderate to severe
 • ASFA Category - I
 • ASFA Recommendation Grade – 1B

• MG pre-thymectomy
 • ASFA Category - I
 • ASFA Recommendation Grade – 1C

<table>
<thead>
<tr>
<th></th>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate - severe</td>
<td>8(279)</td>
<td>8(2837)</td>
<td>30(556)</td>
<td>NA</td>
</tr>
<tr>
<td>Pre-thymectomy</td>
<td>0</td>
<td>5(342)</td>
<td>2(51)</td>
<td>NA</td>
</tr>
</tbody>
</table>
Multiple Sclerosis

- **Incidence**
 - 5-30/100,000

- **Demographics**
 - Female predominance
 - Most common in Caucasians of Northern European ancestry
 - More common in temperate climates
 - Genetic predisposition

- **Signs and Symptoms**
 - Variety of neurologic symptoms resulting from multifocal demyelination of the central nervous system
 - Include fatigue, visual problems, bladder/bowel dysfunction, sensory changes, emotional changes, weakness, balance difficulty, cognitive changes, etc.
Multiple Sclerosis

• Disease course
 • 80 to 85% relapsing and remitting
 • Acute focal or multifocal inflammatory demyelination
 • Development of symptoms over days to weeks
 • Symptoms plateau in 1 to 2 weeks
 • Gradual recovery within 3 months
 • May take up to 6 to 12 months
 • 15% primary progressive
 • Chronic demyelination, axonal loss, and gliosis
 • Progression of disability from onset with no or only minor remissions or plateaus
Multiple Sclerosis

• Pathophysiology
 • T-cells and B-cells penetrate blood-brain barrier with injury to myelin and axons
 • Both cell mediated immunity and humoral immunity involved

Lucchineti CF Neurol Clin 2005;23:77-105
Multiple Sclerosis

• Response to plasma exchange
 • Acute CNS demyelination unresponsive to steroids – Blinded trials have demonstrated moderate to marked improvement in 42% of patients. Case series have reported improvement in 37 to 100% of treated patients
 • Primary progressive MS – Meta-analysis of 6 prospective trials found decreased odds of worsening at 12 and 24 months and increased odds of improvement at 6 and 12 months
Multiple Sclerosis

• Course of TPE therapy
 • Acute CNS demyelination unresponsive to steroids
 • 1 to 1.5 plasma volume exchanges with albumin as replacement
 • 5 to 7 TPE over 14 days
 • Primary progressive MS
 • 1 to 1.5 plasma volume exchanges with albumin as replacement
 • Weekly long-term therapy with tapering as tolerated
Multiple Sclerosis

- Acute CNS demyelination unresponsive to steroids
 - ASFA Category – II
 - ASFA Recommendation Grade – 1B
- Primary progressive
 - ASFA Category – III
 - ASFA Recommendation Grade – 2C
- Chronic progressive
 - ASFA Category – III
 - ASFA Recommendation Grade – 2B

<table>
<thead>
<tr>
<th></th>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute CNS demyelination</td>
<td>3(306)</td>
<td>1(41)</td>
<td>10(169)</td>
<td>NA</td>
</tr>
<tr>
<td>Chronic progressive</td>
<td>7(285)</td>
<td>0</td>
<td>10(165)</td>
<td>NA</td>
</tr>
</tbody>
</table>
Anti-Basement Membrane Disease

- Anti-basement membrane disease (Goodpasture’s syndrome)
- Autoantibody to the c terminus of α_3 chain of type IV collagen
 - Restricted to glomerular and alveolar basement membrane
- Results in complement mediated damage to these membranes producing:
 - Glomerulonephritis
 - Alveolar hemorrhage
Anti-Basement Membrane Disease

- Response to plasma exchange
 - More rapid decline in anti-basement membrane antibody titers
 - Lower serum creatinine levels
 - Fewer patients progressing to renal failure
 - Decreased mortality (40% versus 85%)
Anti-Basement Membrane Disease

Plasma exchange should be instituted early!!!

- Recovery correlates with a serum creatinine of <5 mg/dl and <50% crescents on biopsy
- Recovery infrequent with plasma exchange if:
 - Oliguric
 - Serum creatinine > 6.8 mg/dl
 - Dialysis required at presentation
- Reserve plasma exchange for pulmonary hemorrhage in patients unlikely to respond
Anti-Basement Membrane Disease

• Course of TPE therapy
 • 1 to 1.5 plasma volumes exchange with albumin
 • Daily for 7 to 14 days following:
 • Urine output
 • Serum creatinine
 • Anti-GBM titers
 • Concurrent chemotherapy MUST be initiated
Anti-Basement Membrane Disease

- Dialysis independent
 - ASFA Category - I
 - ASFA Recommendation Grade - 1B
- Diffuse alveolar hemorrhage
 - ASFA Category - I
 - ASFA Recommendation Grade - 1C
- Dialysis dependent
 - ASFA Category - III
 - ASFA Recommendation Grade - 2B

<table>
<thead>
<tr>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(17)</td>
<td>0</td>
<td>19(468)</td>
<td>21</td>
</tr>
</tbody>
</table>
ANCA Associated Rapidly Progressive Glomerulonephritis

- 40% of patients with RPGN - Wegner’s granulomatosis, polyarteritis nodosa, or “renal-limited” pauci-immune glomerulonephritis
- 80% progress to end-stage renal disease
ANCA Associated Rapidly Progressive Glomerulonephritis

- Response to plasma exchange
 - No statistically significant difference in renal outcome in mild RPGN!
 - No difference in mean serum creatinine, changes in creatinine values, dialysis dependency
 - Effective adjuvant therapy for severe disease as defined by dialysis dependency or creatinine > 9 mg/dl!
 - Discontinuation of dialysis or decrease in serum creatinine by at least 50% has been seen in these patients
ANCA Associated Rapidly Progressive Glomerulonephritis

- Course of TPE therapy
 - 1 to 1.5 plasma volume exchange with albumin
 - 7 exchanges per week following:
 - Urine output
 - Serum creatinine
 - ANCA titers (?)
 - Concurrent chemotherapy MUST be initiated
ANCA Associated Rapidly Progressive Glomerulonephritis

- Dialysis independent
 - ASFA Category - III
 - ASFA Recommendation Grade - 2C
- Diffuse alveolar hemorrhage
 - ASFA Category - I
 - ASFA Recommendation Grade - 1C
- Dialysis dependent
 - ASFA Category - I
 - ASFA Recommendation grade - 1A

<table>
<thead>
<tr>
<th>RCT</th>
<th>CT</th>
<th>CS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>8(296)</td>
<td>1(26)</td>
<td>22(347)</td>
<td>NA</td>
</tr>
</tbody>
</table>
Questions?