Platelet Recovery Rate at Day 5 of Therapeutic Plasma Exchange for Acquired Thrombotic Thrombocytopenic Purpura Can Aid in Identifying Risk of Disease Exacerbation

Suzanne Zhou, Yara A. Park, Marian A. Rollins-Raval, Marshall Mazepa, Jay S. Raval
Department of Pathology & Laboratory Medicine
University of North Carolina
Chapel Hill, NC
Presentation Outline

- Disease Background
- Previous research on platelet recovery rate
- Goal of our study
- Methods
- Results
- Limitations
- Conclusions
Acquired TTP

- Autoimmune disease
- Many patients have severe, antibody-induced deficiency of ADAMTS13
 - von Willebrand factor cleaving protease
 - Activity levels ≤10%
- Classically characterized by pentad of findings
 - Thrombocytopenia
 - Microangiopathic hemolytic anemia
 - Fever
 - Nervous system and kidney dysfunction
- Now only dyad of thrombocytopenia and hemolytic anemia used to consider diagnosis
Acquired TTP

- **Standard of care**
 - Emergent therapeutic plasma exchange (TPE)
 - Plasma used as replacement fluid
 - Daily treatment until
 - PLT counts normal x 2 days
 - LDH normalizing

- **Despite prompt treatment, exacerbations occur in ~50% patients**
 - Disease recurrence within 30 days of achieving remission and stopping TPE
 - Currently no well-characterized metrics of distinguishing exacerbators vs. non-exacerbators
Platelet Recovery Rate (PRR)

- Hypothesized as a potential marker of TTP recurrence
- PRR defined as the linear rate of change in platelet count per day

\[
PRR3 = \frac{\Delta \text{Platelet count (day 3 – day 0)}}{3}
\]

- PRR3 ≥ 5,000/µL/day previously identified as a potential marker of disease exacerbation
 - Correctly classified 94% exacerbators
 - Misclassified 67% non-exacerbators

Previous PRR Research

• That TTP patient population had
 » ~60% patients with >10% ADAMTS13 activity
 » ~50% patients with associated diagnoses that could cause thrombotic microangiopathy (TMA) and confound diagnosis of acquired TTP

• Based on our previous analyses of our TTP patient population, we know that our patients with clinical diagnoses of acquired TTP had almost exclusively
 » Severe ADAMTS13 deficiency
 » No associated diagnoses which could cause TMA
Goal of Our Study

• Analyze PRR as a marker of disease exacerbation in our TTP patient population
• Determine if PRR is a generalizable metric of disease exacerbation in different TTP patient populations
Methods

• IRB-approved 16-year retrospective study
• Patient records analyzed between 1/1999 – 12/2014

• Inclusion Criteria
 » Diagnosis of TTP
 » Severe ADAMTS13 deficiency (<10%)
 » First episode of disease

• Exclusion criteria
 » Plasma exchange was not exclusively performed at UNC
 » Other diagnoses which could cause TMA and possibly confound diagnosis of acquired TTP
 • Drugs, pregnancy, malignancy, etc.
Methods

• Patient demographic and laboratory data gathered
 » Age
 » Race
 » Gender
 » Platelet counts
 • Pre-treatment
 • First measurement each day for the first 5 days after treatment
 » Exacerbation status (Yes/No)
Methods

• PRR3 from previous study applied to our TTP patient cohort to determine how this threshold performed
 » PRR3 ≥ 5,000/µL/day

• Analyzed our TTP patient data
 » Calculated PRR1, 2, 3, 4, and 5
 » Stratified data by exacerbators vs. non-exacerbators
 » For any significant PRR differences identified
 • Receiver operator characteristic (ROC) curve analysis subsequently performed to identify optimal cut-point for distinguishing exacerbators vs. non-exacerbators
Results

<table>
<thead>
<tr>
<th>Cohort</th>
<th>N</th>
<th>Mean age (years)</th>
<th>% Female</th>
<th>% Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exacerbation</td>
<td>35</td>
<td>46</td>
<td>77</td>
<td>63</td>
</tr>
<tr>
<td>Non-exacerbation</td>
<td>38</td>
<td>45</td>
<td>82</td>
<td>68</td>
</tr>
<tr>
<td>P value</td>
<td>---</td>
<td>0.78</td>
<td>0.54</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Statistical significance was defined as p<0.05
Results

• When previously described threshold of PRR3 ≥ 5,000/µL/day was applied to our TTP patient population
 » Correctly classified 86% exacerbators
 » Mis-classified 100% of non-exacerbators
Results

<table>
<thead>
<tr>
<th>PRR Day</th>
<th>Exacerbator</th>
<th>Non-Exacerbator</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRR1</td>
<td>5 000</td>
<td>10 000</td>
<td>0.20</td>
</tr>
<tr>
<td>PRR2</td>
<td>22 000</td>
<td>22 000</td>
<td>0.89</td>
</tr>
<tr>
<td>PRR3</td>
<td>27 000</td>
<td>30 000</td>
<td>0.40</td>
</tr>
<tr>
<td>PRR4</td>
<td>26 000</td>
<td>32 000</td>
<td>0.18</td>
</tr>
<tr>
<td>PRR5</td>
<td>19 000</td>
<td>31 000</td>
<td>0.004</td>
</tr>
</tbody>
</table>

*PRR units in /μL/day

*Statistical significance was defined as p<0.05
ROC Curve Analysis

Optimal cut-point = 9,000/µL/day
- Sensitivity = 40%
- Specificity = 97%

PRR5

AUC = 0.726
Limitations

• Retrospective study
 » Designed to generate hypotheses
 » Not powered or appropriate for proving them

• Relatively small sample size

• “Day” defined as starting at 12:00AM (midnight) and ending at 11:59PM
 » This definition may differentially influence the impact of TPE on PLT counts early in treatment
 » E.g., Patient A had 1st TPE at 11:00PM and PLT count drawn next day at 4:00AM (Δ5 hrs)
 » May be different from Patient B, who had 1st TPE at 5:00AM and PLT count drawn next day at 4:00AM (Δ23 hrs)
Conclusions

• Previously published threshold of PRR3 ≥ 5,000/µL/day was not a strong distinguisher of exacerbators vs. non-exacerbators in our TTP population

• Only PRR5 demonstrated a statistically significant difference between exacerbators and non-exacerbators in our TTP patients
 » But additional test performance characteristics revealed this metric to be a poor distinguisher of exacerbators vs. non-exacerbators as well

• As a marker of exacerbation, PRR needs further characterization via larger studies of TTP patients from different centers around the U.S.
Acknowledgements

- Faculty mentors
- North Carolina School of Science and Mathematics
- Dr. Grace Lee
 » Transfusion Medicine Fellow, UNC Hospitals