MALARIA: DISEASE, HISTORY AND TREATMENT

K. Pavenski, MD FCRCPC
ASFA Annual Meeting
May 8, 2015
Disclosures

- I have no relevant conflicts of interest to disclose.
- I am an adult clinical hematologist and a medical director of the apheresis unit.
Learning Objectives

- Discuss prevalence of malaria and clinical presentation of severe malaria
- Discuss pathophysiology of malaria
- Discuss malaria as a driver of human evolution
- Discuss treatment of malaria
 - Antimalarial medications
 - Exchange transfusion
Malaria

- Infection of RBC caused by protozoan parasite *Plasmodium* and transmitted by a bite of an infected female Anopheles mosquito
- Endemic throughout most of the tropics and subtropics
- Nearly all severe disease caused by *Plasmodium falciparum*
 - 225 million cases of malaria and nearly 1 million deaths
 - most deaths in children <5 years old and pregnant women
- In USA, commonest cause of serious imported infection
 - 1688 (0.55 per 100,000) cases per year; 10% of cases are severe

Crompton et al 2014; Marks et al 2014; Mali et al 2011
Life cycle of Plasmodium
Clinical Manifestations: Severe Malaria

- **Clinical features**
 - Cerebral malaria (impaired LOC, seizures)
 - Acute respiratory distress syndrome
 - Circulatory collapse
 - Jaundice in the setting of other organ dysfunction
 - Hemoglobinuria
 - Abnormal spontaneous bleeding

- **Laboratory features**
 - Hypoglycemia (<2.2mmol/L)
 - Severe anemia (Hb<5g/dL)
 - Metabolic acidosis (plasma bicarbonate <15mmol/L, pH<7.35)
 - Hyperparasitemia (>2-5%)
 - Acute kidney injury (Cr>265 umol/L)
Clinical Manifestations:
Three Distinct Pediatric Syndromes
Pathogenesis: Sequestration

- Major actor: *P. falciparum* erythrocyte membrane protein 1 (PfEMP-1)
 - Highly variable protein encoded by parasite genome and expressed on the outer surface of infected RBC (iRBC)
 - Binds to ligands on endothelial cells, platelets, RBC (ex. CD36, ICAM-1, PECAM, CR1, heparan sulphate, etc.)
- iRBC stick to uninfected RBC ("rosettes"), as well as platelets and endothelium leading to
 - Obstruction of microvascular blood flow and endothelial dysfunction → tissue damage due to thrombosis and hemorrhage
 - Evasion of splenic clearance
Pathogenesis: Inflammation

- *P. falciparum* induces systemic inflammatory response
 - Upregulation of vascular adhesion molecules (eg ICAM-1) leading to further exacerbation of iRBC sequestration
 - Increased production of proinflammatory cytokines (ex. TNFα, IFNγ, IL-1, IL-6, IL-8)
Malaria as a Driver of Evolution

Plasmodium species
- P. falciparum (human)
 - P. reichenowi (chimp)
 - P. malariae
 - P. ovale
 - P. vivax

Mammals
- Hominoids diverge from chimpanzees
- Homo sapiens emerge in Africa
- Hominid group O mutation from A
- Human emigrations out of Africa
- Dawn of agriculture
- Hb S; Hb C
- G6PD
- Thalassemia
- Hb E
- Membranopathies

Cserti & Dzik 2007
Plasmodium falciparum malaria and carbohydrate blood group evolution

C. M. Cserti-Gazdewich

Department of Laboratory Hematology, Blood Transfusion Medicine Laboratory & Department of Medicine (Hematology), University Health Network/
Toronto General Hospital, Toronto, Ontario, Canada

<table>
<thead>
<tr>
<th>Study</th>
<th>A</th>
<th>Non-A</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fischer, 1998 (coma)</td>
<td>9/104</td>
<td>11/385</td>
<td>3.22 (1.30, 8.00)</td>
</tr>
<tr>
<td>Lell, 1999 (SM)</td>
<td>27/38</td>
<td>73/162</td>
<td>2.99 (1.39, 6.44)</td>
</tr>
<tr>
<td>Pathirana, 2005 (SM)</td>
<td>26/66</td>
<td>54/177</td>
<td>1.48 (0.82, 2.67)</td>
</tr>
<tr>
<td>Loscertales, 2006 (PM)</td>
<td>24/38</td>
<td>92/160</td>
<td>1.27 (0.61, 2.63)</td>
</tr>
<tr>
<td>Fry, 2007 (SM)</td>
<td>554/979</td>
<td>1538/3016</td>
<td>1.25 (1.08, 1.45)</td>
</tr>
<tr>
<td>Rowe, 2007 (SM)</td>
<td>52/95</td>
<td>111/247</td>
<td>1.48 (0.92, 2.38)</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td></td>
<td>1.34 (1.17, 1.52)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>O</th>
<th>Non-O</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fischer, 1998 (H/CNS)</td>
<td>3/26</td>
<td>10/27</td>
<td>0.22 (0.05, 0.93)</td>
</tr>
<tr>
<td>Lell, 1999 (SM)</td>
<td>54/118</td>
<td>46/82</td>
<td>0.66 (0.38, 1.16)</td>
</tr>
<tr>
<td>Pathirana, 2005 (SM)</td>
<td>19/97</td>
<td>51/146</td>
<td>0.34 (0.19, 0.62)</td>
</tr>
<tr>
<td>Loscertales, 2006 (PM)</td>
<td>57/102</td>
<td>59/96</td>
<td>0.79 (0.45, 1.40)</td>
</tr>
<tr>
<td>Fry, 2007 (SM)</td>
<td>898/1828</td>
<td>1196/2167</td>
<td>0.78 (0.69, 0.88)</td>
</tr>
<tr>
<td>Rowe, 2007 (SM)</td>
<td>37/123</td>
<td>126/219</td>
<td>0.32 (0.20, 0.51)</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td></td>
<td>0.71 (0.63, 0.79)</td>
</tr>
</tbody>
</table>

- A or AB in death vs UM: 23/48 (48%) vs 302/1077 (28%), p 0.005
- OR for death vs UM for A/AB vs O: 2.27 (1.21 – 4.28)

ABO severity gradient effect
A (A1 vs A2) dose effect
A more harmful than HbS trait beneficial

Risk Factor OR (95% CI) P-value
Age 0.83 (0.79-0.88) P<0.001
Female 0.91 (0.73-1.14) P=0.43
HB S 0.82 (0.49-1.37) P=0.46
WBC count 1.12 (1.05-1.19) P<0.001
Platelet count 1.04 (0.93-1.16) P=0.20
Hyper parasitaemia 1.95 (1.54-2.48) P<0.001
Group A or AB 1.62 (1.29-2.53) P<0.001
Group B 1.24 (0.94-1.66) P=0.13
Ln Mono CD54 0.44 (0.36-0.53) P<0.001
Ln Mono CD36 0.77 (0.65-0.91) P=0.002
Ln PII CD36 1.16 (0.97-1.37) P=0.055

Uncomplicated Severe or Fatal
The importance of ABO

- Group A RBC are more likely to be invaded *in vitro* by *P. falciparum*
- PfEMP-1 contains 2 types of adhesive domains, one of which (DBL-1α) binds primarily to cells bearing A and B oligosaccharides
- Group O RBC form weaker rosettes and are less likely to form rosettes
- Macrophage mediated phagocytosis is enhanced for group O iRBC
- Group O individuals have lower levels of VWF

Cserti & Dzik 2007; Wolofsky et al 2012
Treatment: Antimalarial Drugs

Table 1. Key Strengths and Weakness of the Major Available Antimalarials (Excluding ACTs)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Key Strengths</th>
<th>Key Weaknesses</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinine</td>
<td>• Kills the sexual stages of P. vivax, P. malariae, and P. ovale</td>
<td>• Does not kill the pre-erythrocytic stages of malaria parasites or the mature gametocytes of P. falciparum. Difficult to administer in severe malaria</td>
<td>• Uncomplicated P. falciparum, P. vivax, or unidentified malaria</td>
</tr>
<tr>
<td></td>
<td>• Low cost</td>
<td></td>
<td>• Safe in pregnancy</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>• It maintains efficacy for the treatment of P. vivax, P. ovale, and P. malariae infections. Low cost</td>
<td>• Widespread drug resistance has made it almost useless for the treatment of P. falciparum in most of the world</td>
<td>• Chloroquine-sensitive P. falciparum or unidentified malaria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• It does not produce radical cure of P. vivax and P. ovale</td>
<td>• Uncomplicated P. vivax, P. ovale, P. malariae, and P. knowlesi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Low safety margin and very dangerous if overdosed</td>
<td>• Can be used in pregnancy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Used for prophylaxis</td>
</tr>
<tr>
<td>Artemether</td>
<td>• Effective against some chloroquine-resistant strains of P. falciparum</td>
<td>• There is some cross resistance with chloroquine</td>
<td>• Uncomplicated P. falciparum malaria</td>
</tr>
<tr>
<td></td>
<td>• Low cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mefloquine</td>
<td>• Effective against all species of malaria</td>
<td>• Associated with adverse neurological side effects such as mood disturbance and dizziness, and GI side effects</td>
<td>• Uncomplicated P. falciparum, P. vivax, or unidentified malaria</td>
</tr>
<tr>
<td>(Lariam™)</td>
<td>• Long half-life of around 21 days</td>
<td>• High cost</td>
<td>• Used for prophylaxis -- proposed for IPTp</td>
</tr>
<tr>
<td>Primaquine</td>
<td>• Effective against the hypnozoite and so provides radical cure of P. vivax and P. ovale</td>
<td>• Hemolytic side effects in G6PD-deficient patients</td>
<td>• Uncomplicated P. vivax and P. ovale, anti-gametocyte activity in other species</td>
</tr>
<tr>
<td></td>
<td>• Low cost</td>
<td>• Must be taken daily for 14 days to be effective</td>
<td></td>
</tr>
<tr>
<td>Sulfadoxine-pyrimethamine</td>
<td>• One-dose cure</td>
<td>• Resistant strains in East Africa</td>
<td>• Used for IPTp and proposed for use in IPTi</td>
</tr>
<tr>
<td></td>
<td>• Can be used in pregnancy</td>
<td>• Rare severe adverse effects: Stephen Johnson Syndrome</td>
<td>• Can be used in pregnancy</td>
</tr>
<tr>
<td>Intravenous artesunate</td>
<td>• Intravenous formulation</td>
<td>• No GMP formulation available. Need to compare intravenous and intramuscular delivery (and potentially intra-rectal)</td>
<td>• Used for prophylaxis</td>
</tr>
<tr>
<td>Atovaquone-proguanil</td>
<td>• Administration: once per day for 3 days</td>
<td>• High cost</td>
<td>• Uncomplicated P. falciparum or unidentified malaria</td>
</tr>
<tr>
<td>(Malarone™)</td>
<td>• Active against all species of Plasmodium</td>
<td>• GI side effects</td>
<td>• Used for prophylaxis</td>
</tr>
<tr>
<td></td>
<td>• Inhibits pre-erythrocytic development in the liver and oocyst development in the mosquito</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GI: Gastrointestinal; GMP: Good manufacturing practice; G6PD: Glucose-6-phosphate dehydrogenase; IPTp: Intermittent preventative treatment in pregnancy; IPTi: Intermittent preventative treatment in infants; WHO: World Health Organization.
Treatment: Antimalarial Drugs for Severe Falciparum Malaria

- **Quinine**
 - Derived from Cinchona plant
 - Used since 16th century
 - Parasite clearance time (PCT) for IV quinine – about 50 hrs

- **Artemisinins (artesunate)**
 - Derived from Artemisia (aka Qinghaosu or wormwood) plant
 - Used since 200 BC
 - PCT for IV artesunate – about 20 hrs
 - Compared to quinine, reduces MR in severe malaria by >30%
 - Since early 2000’s, first line therapy for severe malaria

Tan et al 2013
Treatment: Exchange Transfusion (ET)

- 1st reported use in 1974 in a patient with cerebral tropical malaria with blackwater fever
- Adjunct ET became standard of care and recommended for severe malaria with hyperparasitemia by
 - CDC until 2013
 - ASFA guidelines (Grade 2B recommendation, 2013 edition)
- What is “ET”?
 - Manual vs. automated (differences in efficacy and safety)
 - Whole blood vs. RBC + FFP vs. erythrocytapheresis (+/-plasmapheresis)
 - Partial vs. 1 red cell volume vs. 1 whole blood volume vs….
Exchange Transfusion: Biologic Rationale

- Removes parasite load
 - ET + IV quinine halves the volume of parasites within 2-6 hrs
- Removes parasite derived antigen load reducing sequestration and improving rheology
 - Removal of less deformable/sticky iRBC -> improved microcirculatory flow
 - (Ability to change patient’s blood group thus significantly altering cytoadherence)
- Replenishes ADAMTS13
- Removes hemolytic metabolites (free hemoglobin, other RBC proteins)
- Removes cytokines and pro-inflammatory mediators
- Corrects anemia and coagulopathy

Powell & Grima 2002; Miller et al 2013
Does it work?

Summary of 8 studies showing ORs for survival after ET compared with antimalarial chemotherapy (quinine) alone

Mark S. Riddle et al. Clin Infect Dis. 2002;34:1192-1198

© 2002 by the Infectious Diseases Society of America
Exchange Transfusion: Efficacy

- Case-control study of US patients with severe malaria (26 yrs experience)
 - Matched for age, completion of appropriate prophylaxis, antimalarial regimen, ARDS, cerebral malaria, renal failure, *P. falciparum* infection, type of hospital, immune status, and parasite

<table>
<thead>
<tr>
<th></th>
<th>Cases (adjunct ET)</th>
<th>Controls (no ET)</th>
</tr>
</thead>
<tbody>
<tr>
<td># of patients</td>
<td>101</td>
<td>314</td>
</tr>
<tr>
<td>MR</td>
<td>17.8%</td>
<td>15.9%</td>
</tr>
</tbody>
</table>

- No statistically significant association between ET and survival outcome (OR 0.84, 95% CI 0.44-1.60)
- Adjunct ET cannot be recommended
Exchange Transfusion: Safety

- Very little data
- Complications of ET may mimic complications of malaria or antimalarial treatment
- Dependent on type of procedure, type of replacement and its safety, local resources
 - Automated RBC exchange is safe (van Genderen et al 2010, Auer-Hackenberg et al 2012)
Exchange Transfusion: The problem with evidence…

- The problem with current evidence is a lack of good quality evidence
 - 73 case reports and case series, 12 comparative studies
 - Mostly retrospective
 - No appropriate controls, no adjustment for confounders
 - Small numbers of patients, low mortality
 - Underpowered to detect differences in survival
 - Effect on other clinically significant outcomes?
- Heterogeneous patient population
 - Different severity of disease (sicker patients more likely to have had ET), immunity status
- Heterogeneous treatments
 - “ET” – ex. manual ET is not as effective and not as safe as automated exchange (Kreeftmeijer-Vegter 2013)
 - Antimalarial treatments

Tan et al 2013; Riddle et al 2002
Exchange Transfusion:
Getting more evidence may be very difficult

- To perform RCT, need a huge number of patients
- Resource and patient mismatch
 - Small numbers of patients where capacity exists (equipment, trained personnel and adequate amounts of safe blood components) and where there is no immunity
 - Large numbers of patients where no capacity exists
Exchange Transfusion: Forget it?

- There is a biological rationale for efficacy
- The existing data are not helpful
 - RBC exchange may be effective in a patient subgroup (non-immune travelers, elderly with cerebral malaria, etc.)
 - RBC exchange may impact morbidity (ICU stay, permanent organ damage or disability)
- Automated RBC exchange is safe
- The current treatment does not save all with severe malaria (cerebral malaria or acidosis)
 - On artesunate, 15% mortality rate in (mostly) adults (SEAQUAMAT RCT) and 8.5% mortality rate in children (AQUAMAT RCT)
- Artesunate resistance is emerging

Dondorp et al 2005; Dondorp et al 2010
Decision?

- Do not perform adjunct RBC exchange
- or
- Perform adjunct RBC exchange in select patients with severe malarial manifestations despite administration of appropriate drugs
Current State

- I practice in one of the two adult apheresis centres in the Greater Toronto Area (catchment population: over 6.1 million)

- The last time either of our centres have performed automated RBC exchange on a patient with severe malaria was 2012
Conclusion

- Malaria is a devastating disease
- Effective drug therapy exists but unable to save all
- There is a compelling biological rationale for performing an exchange transfusion
- The evidence on exchange transfusion (as it exists) is unhelpful
- More studies are necessary but may not be feasible