Molecular Typing of Red Cell Antigens
(When, Why and How?)

Transfusion Practice for Sickle Cell Disease
Education Session VIII - ASFA & AABB Joint Session
May 6, 2017

Dr. Connie M. Westhoff, SBB, PhD
Executive Scientific Director
Immunohematology and Genomics
New York Blood Center
Genomics Revolution

• Impacting all areas of laboratory testing
 • Identification of microbes
 • Tumor diagnosis
 • Coagulation therapy

• Transfusion Medicine
 – Genes encoding blood group antigens cloned in 1990’s
 – DNA-based approach to “predict” red cell & platelet antigens
 – Most antigens are encode by single nucleotide polymorphisms
 • “SNP-typing”
 – >300 blood group antigens
 • 18-30 are routine problems for transfusion
 – “extended antigen profile”
 – Not for routine ABO and Rh typing
When and Why? DNA-based antigen typing

- **Type multiply transfused patients**
 - avoid interference from circulating transfused donor RBCs
 - cell separations labor intensive and can be inaccurate

- **Type RBCs coated with immunoglobulin (+DAT)**
 - alternative – chemical treatment (AET, DTT)
 - labor intensive; destroy or weaken some antigens

- **Type clinically significant blood groups for which there are no commercial reagents**
 - Do(a/b), Hy, Jo(a), Js(a/b), Co(a), Yt(a), VVS, U, etc.
DNA-based antigen testing: Strengths

• Do not need a RBC sample
 – buccal swab - bone marrow transplant patients
 – fetal amniocytes

• Determine fetal risk for HDFN (antibodies to RBCs)
 NAIT (antibodies to platelet antigens)
 - Paternal testing to determine risk
 - gene copy number (zygosity: RhD and HPA)

• Test for numerous minor antigens in a single assay
 – improved accuracy
 • antigen typing
 • antibody ID
 – find uncommon combinations of antigens in donor inventory
 – provide higher level of care
>15 years experience: methods have evolved

Manual
RFLP/SSP

Semi-Automated
Real-time PCR

Automated
DNA probes on miniaturized beads on silicone chip
BioArray/Immucor

PCR

DNA probes on colored beads
Luminex
Progenika

Gel Electrophoresis

Automated readout

8 samples

96 samples

automated interpretation expands use

New York Blood Center
ENCODED BEADS IN RANDOM ARRAY

Markers for 35 antigens/chip

20-30 beads each probe

96 samples = 3,360 antigens

8 samples = 280 antigens

8 different samples

Probe N
128 colors

FYA

FYB
Human Erythrocyte Antigen (HEA) Phenotyping by DNA Analysis Report

<table>
<thead>
<tr>
<th>Blood Group</th>
<th>Antigen</th>
<th>Result</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh</td>
<td>e</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Kell</td>
<td>K</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>k</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kpa</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kpb</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jsa</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jsb</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Kidd</td>
<td>Jka</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jkb</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Duffy</td>
<td>Fya</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fyb</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>MNS</td>
<td>M</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Lutheran</td>
<td>Lnu</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Llb</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Diego</td>
<td>Dia</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dib</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Colton</td>
<td>Coa</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cob</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Donath</td>
<td>Dva</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dsb</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jca</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hy</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Landsteiner-Wiener</td>
<td>Lwa</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lwb</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sciuence</td>
<td>So1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sc2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hemoglobin S</td>
<td>HbsS</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Phenotype read-out
+ = positive
0 = negative

35 antigens

+ HgbS

V/VS
ID CORE-XT

<table>
<thead>
<tr>
<th>Blood group system</th>
<th>Detected alleles</th>
<th>Genotype result</th>
<th>Antigens</th>
<th>Predicted Phenotype result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh</td>
<td>RHCE^oe, RHCE^cE</td>
<td>RHCE^oe, RHCE^cE</td>
<td>C (RH-2)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>RHCE^oe</td>
<td></td>
<td>E (RH-3)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>RHCE^cE</td>
<td></td>
<td>c (RH-4)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>RHCE^cE</td>
<td></td>
<td>e (RHS)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>RHCE^cE</td>
<td></td>
<td>GW (RH-8)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>RHCE^cE</td>
<td></td>
<td>V (RH-10)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>RHCE^cE</td>
<td></td>
<td>hR (RH-19)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>RHCE^cE</td>
<td></td>
<td>VS (RH-20)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>RHCE^cE</td>
<td></td>
<td>hR (RH-31)</td>
<td>+</td>
</tr>
<tr>
<td>Kell</td>
<td>KELK^KPB^JSB</td>
<td></td>
<td>K (KEL-1)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>KELK^KPB^JSB</td>
<td></td>
<td>Kpa (KEL-5)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>KELK^KPA^JSB</td>
<td></td>
<td>Kpb (KEL-4)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>KELK^KPA^JSB</td>
<td></td>
<td>Ja (KEL-6)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>KELK^KPB^JSB</td>
<td></td>
<td>Jsb (KEL-7)</td>
<td>+</td>
</tr>
<tr>
<td>Kidd</td>
<td>JK^A</td>
<td></td>
<td>Jka (JK-1)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>JK^B</td>
<td></td>
<td>Jkb (JK-2)</td>
<td>0</td>
</tr>
<tr>
<td>Duffy</td>
<td>FY^A</td>
<td></td>
<td>Fya (FY-1)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>FY^B</td>
<td></td>
<td>Fyb (FY-2)</td>
<td>0</td>
</tr>
<tr>
<td>MNS</td>
<td>GYP^A^M, GYP^A^N</td>
<td></td>
<td>M (MNS-1)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>GYP^B^S</td>
<td></td>
<td>N (MNS-2)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>GYP^B^S</td>
<td></td>
<td>S (MNS-3)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>GYP^B^S</td>
<td></td>
<td>J (MNS-4)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>GYP^B^S</td>
<td></td>
<td>U (MNS-5)</td>
<td>+</td>
</tr>
<tr>
<td>Diego</td>
<td>D^B</td>
<td></td>
<td>Dla (DO-1)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>D^B</td>
<td></td>
<td>Dlb (DO-2)</td>
<td>0</td>
</tr>
<tr>
<td>Dombrock</td>
<td>DOA^A</td>
<td></td>
<td>Doa (DO-1)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>DOB^B</td>
<td></td>
<td>Dob (DO-2)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>DOA^B, HY-</td>
<td></td>
<td>Hy (DO-4)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>DOA^A, JOA-</td>
<td></td>
<td>Jsa (DO-5)</td>
<td>+</td>
</tr>
<tr>
<td>Colton</td>
<td>CO^B</td>
<td></td>
<td>Coa (CO-1)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CO^B</td>
<td></td>
<td>Cob (CO-2)</td>
<td>0</td>
</tr>
<tr>
<td>Cartwright</td>
<td>YT^A</td>
<td></td>
<td>Yta (YT-1)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>YT^B</td>
<td></td>
<td>Ytb (YT-2)</td>
<td>+</td>
</tr>
<tr>
<td>Lutheran</td>
<td>LU^A</td>
<td></td>
<td>Lua (LU-1)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>LU^B</td>
<td></td>
<td>Lub (LU-2)</td>
<td>0</td>
</tr>
</tbody>
</table>

*1: according to ISBT terminology

*2: Weak antigen expression

37 antigens
Laboratory Environment for Testing

• **3 separate laboratory areas**
 – Sample DNA extraction
 – Pre-PCR set-up (“clean”)
 – Post-PCR analysis (“contaminated”)

• **Power of PCR to amplify contamination from environment**
 – Sterile-like techniques
 – Hood with UV or positive pressure room
 – Dedicated equipment and supplies
 – Gloves
 – Filter tips for pipets

Challenge:
Methods and equipment not common in hospital blood banks
Laboratory Pre-transfusion Testing
Routine: ABO, RhD type and antibody screen

2016: 36 Blood group systems (352 antigens)

Approach has not changed in >60 years

1945: Introduction of Indirect Antiglobulin Test

- Carbohydrate
- Single-pass membrane protein
- Multi-pass membrane protein
- GPI-linked protein
- Adsorbed from plasma

Cover Transfusion, Reid et al.
Why interest in more than ABO and D?

ALLOIMMUNIZATION

~3% transfused patients make antibodies (alloimmunized) to foreign red cell antigens

35% or more of chronic transfused patients
- increase costs of each subsequent transfusion
- delay in providing transfusion
- life-threatening in emergency

11.6 M transfusions in U.S./year
32,000 transfusions / day

Is this level of complication acceptable medical practice today?
65% of antibodies drop to undetectable levels in 6 months

- patient at risk for transfusion reaction
- can be life-threatening
 - 90% anti-Jka disappeared
- all had disappeared by 10 years
- only anti-D was very stable

The persistence and evanescence of blood group alloantibodies in men. Tormey CA, Stack G. *Transfusion* 2009, 49:505-12

What is the value of antibody screen and crossmatch for detecting compatibility?
Why interest in more than ABO and Rh?

Females: pregnancy complications

hemolytic disease of fetus and newborn

1960’s Rh disease prevention with **Rh immune globulin injection**
- prevents maternal antibody production

K antigen – 10% potentially exposed
 - Anti-K 1/100 pregnancies, 40% K+ babies severe anemia

c antigen – 18% potentially exposed
 - Anti-c – 32 fetal deaths in England and Wales (1977-90)
Prevention of Alloimmunization - Western World

The most common antibody specificities: Rh C, E, c; K (Kell)

- **Germany**
 - Majority get CcEe & K matched

- **Netherlands**
 - Females <45yr c E K
 - SCD/Thal CEK, Fya, Jkb, Ss

- **Finland**
 - Females CcEe & K matched

- **UK**
 - Females get K-

- **Switzerland**
 - Females CcEe & K
 - Chronic transfused or alloantibody - match for CcEe K Fy, Jk, Ss

- **U.S.**
 - Matching for CEK for SCD is common but not universal (due to cost)

- **Australia**
 - Females and children K-
Higher Level of Patient Care

• Blood transfusions have declined significantly over the last five years
 – advances in surgical techniques
 – patient blood management (PBM) programs

• Lower hgb threshold for patients (7.0 gm/dl) and limited transfusion
 – Optimal RBC survival more important than ever

• Health Care Landscape
 – focus on outcomes – improved patient care
 – personalized medicine with Genomics
When to apply genomics to transfusion therapy?

- **Patients with warm autoantibodies when compatibility cannot be demonstrated by routine methods**
 - Genotyping allows extended patient antigen profile
 - Select “antigen matched” (antigen negative) RBCs for transfusion [Rh CcEe, K, Fya/b, Jka/b, Ss]
 - Avoids the use of term “least incompatible” units
 - Allows transfusion of units “antigen-matched for clinically significant blood group antigens”

- **Improve patient care AND turn-around time**
 - eliminate frequent repeat adsorptions to remove the autoantibodies
 - to rule out new underlying RBC alloantibodies.
When to apply genomics to transfusion therapy?

• **Patients receiving monoclonal anti-CD38 therapy**
 – Multiple myeloma
 • CD38 highly expressed on plasma cells
 – more applications in clinical trials
 • Additional monoclonals in trials
 – anti-CD47

Problem:
– CD38 and CD47 also expressed on RBCs
 • Antibody circulating in patient serum/plasma
 – antibody screen – positive
 – crossmatch – positive
 – compatibility cannot be demonstrated

Anti-CD38 (DARA; Daratumumab; Darzalex™)
When to apply genomics to transfusion therapy?

- **Patients receiving monoclonal anti-CD38 therapy**
 - Use 0.2M DTT to treat test RBCs
 - denatures CD38 on RBCs
 - can detect underlying alloantibodies
 - Problem: DTT denatures other RBC proteins
 - Kell, Dombrock, Yt, LW, Gerbich, Cromer
 - Miss detecting these antibodies
 - DTT not routinely used in hospital laboratory
 - DTT treated cells not commercially available

- **Patients receiving monoclonal anti-CD47 therapy**
 - interferes with ABO/Rh typing, crossmatch, antibody screen
 - high level expression on RBCs
 - cannot remove CD47 from the RBC
When to apply genomics to transfusion therapy?

• **Rh typing for D**

 – Altered expression of RhD in approximately
 • 2% of Caucasians; 1% of Asians; 4% of Black and Hispanic

 “Weak D” or “Partial D” - routine typing cannot distinguish
 • “Partial D” – lack RhD epitopes; at risk for anti-D
 • “Weak D”- do not lack RhD epitopes; not at risk

 – Of clinical importance for
 • women of child-bearing age
 • to avoid pregnancy complications
 • consider transfusion with D negative units
 • determine who is candidate for Rh immune globulin (RhIG)
When to apply genomics to transfusion therapy?

- **Transfusion dependent patients** who make antibodies or any patient who has made one alloantibody
 - increase risk (20 fold) for additional antibodies

- **Sickle Cell Disease and alloimmunization**
 - U.S. >100,000 patients (~12,000 in NY)
 - ~50% are chronically transfused
 - 1/12 (8%) of African-Americans carry the gene
 - 1/500 African American births HgbS/S sickle cell anemia
 - 1/35,000 Hispanic births
 - over 1,000 affected newborns each year
Mobility, migration and SCD

Number of migrants with HbS increased over other migrants

WHO number of international migrants
1960 - 92.6 million, 1.6M with HbS
2000 - 165.2 million, 3.6M with HbS

Population movements create a long-term burden on health-care systems

Mobility, migration and SCD

- HbS prevalence due to protection from malaria in endemic regions
 - Global population movements having a substantial effect on the distribution of the HbS gene

Random sampling of data points for presence of HbS gene

Piel et al. Lancet 2013:381:142-51
Rh Antigens - defined by serology

<table>
<thead>
<tr>
<th>Numerical</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh1</td>
<td>D</td>
</tr>
<tr>
<td>Rh2</td>
<td>C</td>
</tr>
<tr>
<td>Rh3</td>
<td>E</td>
</tr>
<tr>
<td>Rh4</td>
<td>c</td>
</tr>
<tr>
<td>Rh5</td>
<td>e</td>
</tr>
<tr>
<td>Rh6</td>
<td>ce or f</td>
</tr>
<tr>
<td>Rh7</td>
<td>Cw</td>
</tr>
<tr>
<td>Rh8</td>
<td>Cx</td>
</tr>
<tr>
<td>Rh9</td>
<td>V</td>
</tr>
<tr>
<td>Rh10</td>
<td>Ew</td>
</tr>
<tr>
<td>Rh11</td>
<td>G</td>
</tr>
<tr>
<td>Rh12</td>
<td>Ho</td>
</tr>
<tr>
<td>Rh13</td>
<td>hro</td>
</tr>
<tr>
<td>Rh14</td>
<td>hr</td>
</tr>
<tr>
<td>Rh15</td>
<td>hrs</td>
</tr>
<tr>
<td>Rh16</td>
<td>VS</td>
</tr>
<tr>
<td>Rh17</td>
<td>CENR</td>
</tr>
<tr>
<td>Rh18</td>
<td>CEAG</td>
</tr>
</tbody>
</table>

Serologic Rh typing – 5 principal antigens
- found in all ethnic groups

RH genotyping
- > 495 different RHD alleles
- > 155 different RHCE alleles (majority in Blacks)

red = associated primarily with Black African ethnicity
RH Locus – 2 Genes

Rh “positive”

- **RHD**
 - 3’ → 5’
 - D antigen

- **RHCE**
 - 5’ → 3’
 - C/c and E/e

35 amino acid differences

Rh “negative”

- **RHCE**
 - C/c and E/e

Gene deletion, majority

- XXXXXXXXX

>85 others due to mutations

Serologic typing reagents detect 5 principal antigens: D, C/c, E/e
RH alleles clinically relevant to date

Gene

- **RHD**
 - 10 exons
 - 5' to 3' 30 kb
 - > 495 RHD alleles
 - > 495 different RhD proteins

- **RHCE**
 - 10 exons
 - 5' to 3'
 - > 155 RHCE alleles
 - > 155 different RHCE proteins

RBC’s

- RhD
- RhCE

C/c E/e
RHD hybrid alleles = “Partial D antigen”

RHD exons replaced with RHCE exons

<table>
<thead>
<tr>
<th>RHD</th>
<th>New antigens</th>
<th>RHCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIIIa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIIIc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIVa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIVb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIVbIII</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIVbIV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVI type 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVI type 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFR2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBT1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBT2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAK</td>
<td></td>
</tr>
<tr>
<td>BARC</td>
<td></td>
</tr>
<tr>
<td>Go</td>
<td></td>
</tr>
<tr>
<td>Evans</td>
<td></td>
</tr>
<tr>
<td>DW</td>
<td></td>
</tr>
<tr>
<td>BARC</td>
<td></td>
</tr>
<tr>
<td>FPTT</td>
<td></td>
</tr>
<tr>
<td>FPTT</td>
<td></td>
</tr>
<tr>
<td>Rh32</td>
<td></td>
</tr>
</tbody>
</table>

RBCs type as RhD+, but patients can make anti-D
RHCE allele variation in African Blacks

RHD

<table>
<thead>
<tr>
<th>Oldest African</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
</table>

RHCE

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
</table>

- **ce**
 - ce
 - ceS
 - hrB-
 - ce
 - ce (JAL)
 - ceMO
 - hrS-hrB-
 - ceTI
 - hrS-
 - ceEK
 - hrS-
 - ceAR
 - hrS-
 - ceBI
 - hrS-
RHCE genotyping needed for C antigen-matching

RBCs type as C+, but patients can make anti-C

- Frequency estimated to be 8-22% of C+ African Blacks
- Patients better served with C− donor units

RHD

- D/Ce/D hybrid
- Does not encode D
- Encodes altered C+

RHCE

- encodes altered e

- N-linked glycosylation site

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

- W16C
- L245V
- G336C

Ce^s

VS+

hr^{B−}
when serology isn’t enough

– 4 year old (born 2000) Sickle Cell Disease
 – Primary Treatment – hydroxyurea
 • Transfusion protocol
 – antigen-match for C, E, K

• Pre-transfusion typing
 – O positive (D+C+c+E-e+)
 – extended phenotype K-, Jk(a+b-), Fy(a-b-), S+s-, M+N+

 – Transfused with E- and K- units
Transfusion History

Pt: O pos D+C+c+E-e+

- 2000 (5 months of age) – 1 unit
- 2001 – 2 units
- 2004 – 2 units
- ~4 months after last transfusion
 - pain and fever & enlarged spleen
 - 4 gm/dl hgb
 - surgery for splenectomy
 - 2+ antibody Screen
 - 2+ DAT
 - E-K- units were incompatible
 - Anti-Jk(b)
 - Anti-C and –e (-hrB)
• **RHD** = not at risk for anti-D

• **Hybrid - altered expression of C antigen**
 – explains anti-C in patient whose RBCs type as C+
 • In U.S. ~35% of African Blacks who are C+ RBCs
 • **should receive C- units to prevent anti-C**

• **RHCE - encodes altered expression of e antigen**
 – Explains production of anti-e in patient whose RBCs type e+
Options for Transfusion

O Pos D+C+E-c+e+

• **Units negative for C and e (DcE/DcE; R2R2)**
 - 2% of donors
 - Patient at significant risk for anti-E
 • Save for emergency transfusion

• **RH genotype matched donor**
 - Family members ?
 - One younger sibling HgbS/S
 • Parents are HgbS+
 - Aunt - O positive, K-, E-, Jk(b-), HgbS-

• **American Rare Donor Registry**
 - 2004 – 4 eligible donors K-, E-, Jk(b-), HgbS- and serology hrB-
 - 1 - California
 - 1 - Florida
 - 1 - Wisconsin
 - 1 - Louisiana
RH Genotype Donor Matching

• Aunt

Normal D

RHD

D-CE-D

hybrid

D- C+

RHCE

ce

Normal

ceS

VS+ V-

- Incompatible - one allele encoding conventional e antigen

• ARDP - 3 donors

- Compatible – homozygous for one of his RH haplotypes

D-CE-D

hybrid

D- C+

RHD

D-CE-D

hybrid

D- C+

RHCE

ceS

VS+ V-

ceS

VS+ V-
Transfusion

- 3 units
 - 1 unit transfused pre-surgery
 - 1 unit transfused subsequent tonsillectomy
 - 1 stored for future use

- Maintained on hydroxyurea therapy

- Has received 10 genotyped units
 - 2004-2016

- No additional antibodies

Future
Genomics Revolution

• Whole genome sequence data will be available
• Especially for patients with chronic disease

• Will need to “read” i.e. translate the information

• “Sequence Once; Read Often”

45 RBC genes
-346 antigens

6 platelet genes
-33 antigens

Ilumina HiSeq - 30X coverage

William J. Lane, MD, PhD
Promise Genotyping

Transfusion Medicine decision making through Bioinformatics
Thank You!

New York Blood Center