Novel Therapies for Vascular Access Dysfunction: Optiflow Device, Gene Therapy, and Sirolimus Wrap

Timmy Lee, M.D., M.S.P.H., F.A.C.P., F.A.S.N.
Assistant Professor of Medicine
Division of Nephrology and Hypertension
University of Cincinnati Academic Health Center
February 26, 2012

Disclosure Statement

- Consultant:
 - Proteon Therapeutics
 - Shire
- Funding:
 - National Institutes of Health (5K23DK083528-03)
 - National Kidney Foundation Franklin McDonald/Fresenius Young Investigator Award

Objectives

- Pathology and Pathophysiology of AVF and AVG Dysfunction
- Novels Therapies
 - Endothelial Cell Implants
 - Elastase
 - Local Gene Delivery Therapy
 - Sirolimus Wrap

Neointimal Hyperplasia Characteristic Lesion of Dialysis Access Dysfunction

Roy-Chaudhury, et al. JASN, 2006 and Lee et al. ACKD, 2009

Hemodynamic and Vascular Biology Interactions:
A Challenge and an Opportunity

Optimize Upstream Hemodynamics

Optimize Downstream Biology

Goals of Therapies to Target Downstream Biology

- Promote Vasodilatation
- Inhibit Neointimal Hyperplasia
Types of Drug Delivery Systems to Treat Vascular Access Stenosis

- Systemic
- Local Drug Delivery
 - Perivascular ("outside to inside")
 - Endovascular ("inside to outside")

Adventitial Cells Migrate to the Intima

After vascular injury adventitial fibroblasts migrate into intima where they become myofibroblasts or contractile smooth muscle cells

Roy-Chaudhury P. et al, JASN, 2006

Principles of Novel Perivascular Local Delivery Therapies

- Drug targets downstream biology
- Drug applied directly to adventitia to block adventitial activation of fibroblasts
- Drug applied locally near or at site of vein-artery (AVF) or vein-graft (AVG) anastomosis
 - Directed at the site of vascular injury with minimal systemic toxicity
- Gradient of drug concentration (highest at adventitia and lowest at endothelium)

Endothelial Cell Implants

Optimizing Downstream Biology: Perivascular Endothelial Cell Implants

- Rationale behind this approach is that the endothelial cell is not just a lining cell but also a cell that produces a slew of beneficial mediators (NO and prostacyclin)
- Just need to deliver ECs to a site near the region of stenosis and the beneficial mediators will do the rest!

Edelman and Negretti J Vasc Res 2003

Optimizing Downstream Biology: Perivascular Endothelial Cell Implants (Vascugel) in Diabetic Patients

- "V-HEALTH STUDY" (Phase I/II trial)
 - No difference in safety profiles (infection rates)
 - No difference in primary unassisted patency
 - Received FDA approval for Phase III study in 2011

Conte et al, JVS, 2009
Efficacy of Phase II Study of Vascugel

Conte et al, JVS, 2009

Primary Patency

- Vascugel 49%
- Placebo 25%

Assisted Primary Patency

- Vascugel 78%
- Placebo 60%

Safety Data From Phase 2 Study of Vascugel

Conte et al, JVS, 2009

Optimizing Downstream Biology: Perivascular Elastase Administration

- Recombinant elastase
- Applied to the adventitia
- Destroys the elastin in the vessel wall (internal elastic lamina)
- Results in a permanent increase in vessel caliber
- Phase I/II study ongoing in AVF/AVG

Elastase Therapy

Gene Therapy
Optimizing downstream biology: VEGF-D “GENE” therapy (Trinam; Ark Therapeutics)

- VEGF-D adenoviral vectors will deliver VEGF-D to the vessel wall
- Stimulate the production of nitric oxide and prostacyclin
- Inhibit venous stenosis at the GVA with minimal systemic toxicity
- Good safety data from a Phase II study

Biodegradable Collar

Perivascular Delivery of Gene Therapy

Completion of Surgical Placement of Collar

Injection of VEGF-D

Sirolimus Wrap

Efficacy of Sirolimus

- Sirolimus is immunosuppressive with anti-inflammatory and anti-proliferative effects
 - Acts on smooth muscle cells
- Proven utility in suppressing neointimal tissue in stents in coronary artery disease
Coll-R sleeves are wrapped around graft (Coll-R #1) and vein (Coll-R #2) at graft-vein anastomosis.

Kaplan–Meier Analysis of Primary Unassisted Patency and Secondary Assisted Patency

Patient Characteristics and Outcomes

Whole Blood Sirolimus Levels Following Implantation

Individual Outcomes of COLL-Grafts

Future Paradigm for Treatment of Hemodialysis Vascular Access Stenosis
Conclusions

- Adventitial activation may lead to cellular migration from adventitia to media to intima
- Perivascular therapies may target adventitial activation and promote vasodilatation and inhibit neointima development
- Promising perivascular therapies entering phase III trials
- Target therapies to multiple points where vascular injury occurs