Update on Vaccine Regulation: Expediting vaccine development

Phil Krause
FDA/CBER/OVRR
Challenges in vaccine development

- High cost of development relative to typical profits
- US markets are often dependent upon ACIP recommendations
- Clinical endpoint studies may not always be feasible pre-licensure
- Need to identify endpoints and regulatory pathways to facilitate development for product sponsors
- The public reasonably demands safe, effective vaccines that meet a high standard
 - Low tolerance for error
 - Human subjects protections are also critical
Licensure of Vaccines

Section 351 of the Public Health Service Act, 42 USC 262:

• Licensure on the basis of a demonstration
 • that the biological product ... is safe, pure, and potent; and
 • the facility in which the biological product is manufactured, processed, packed, or held meets standards designed to assure that the biological product continues to be safe, pure, and potent;

• Only those vaccines that are demonstrated to be safe and effective, and that can be manufactured in a consistent manner will be licensed by the FDA

• Biological product must be “applicable to the prevention, treatment or cure of diseases or injuries of man” (21 CFR 610.3)
CBER-sponsored or Co-sponsored Scientific Meetings

• Recent meetings to discuss scientific data that could support development of regulatory pathways for vaccines against specific pathogens included:
 • 4/14 Workshop on Regulatory Issues Related to Dengue Virus Vaccines
 • 9/13 Workshop on Immune Correlates of Protection for Tuberculosis Vaccines
 • 6/12 Universal Influenza Vaccines
 • 1/12 The Development and Evaluation of Human Cytomegalovirus Vaccines
 • 9/11 The Development and Evaluation of Next-Generation Smallpox Vaccines
 • 4/11 Neisseria Meningitidis Serogroup B Vaccine, VRBPAC meeting to discuss study endpoints
Refocusing the Vaccines IND Process

• Engage sponsors in addressing key issues earlier in the regulatory cycle

• Especially important for vaccine CMC discussions
 – Delayed CMC discussions may reduce likelihood of first cycle approvals, because CMC issues will need to be resolved during BLA review

• Separate clinical and CMC meetings can assure that all issues are discussed
 • Routinely offered pre-BLA
 • May also be useful at end of phase II

• Increased discussion of longer-term strategies earlier in the review process
Regulatory programs to expedite vaccine development & licensure

- Fast track
- Breakthrough
- Accelerated approval
- Priority review
Definition of Serious Condition

• A disease or condition is associated with morbidity that has substantial impact on day-to-day functioning, and
• Drug must be intended to have an effect on a serious aspect of a condition
Definition of Available Therapy

• Approved or licensed in the U.S. for the same indication
• Is relevant to current U.S. standard of care (SOC)
 – When a drug development program targets a subset of a broader disease population, the SOC for the broader population, if there is one, generally is considered available therapy for the subset
 – SOC will evolve- FDA will determine what constitutes available therapy at the time of the relevant regulatory decision
• A drug granted accelerated approval based on a surrogate or clinical endpoint and for which clinical benefit has not been verified is not considered available therapy
• Accelerated approval (restricted distribution) or approval with a REMS is considered available therapy only if study population for new drug is eligible to receive the drug
Definition of Unmet Medical Need

• A condition not addressed adequately by available therapy
• Will consider a range of potential advantages, for example
 – Has an effect on a serious outcome of the condition that is not known to be influenced by available therapy
 – Ability to address an emerging or anticipated public health need (e.g., drug shortage)
• Exists if the only available therapy was approved under accelerated approval based on a surrogate or an intermediate clinical endpoint and the clinical benefit has not been verified
Fast Track Designation

• Criteria
 • Serious condition
 • Nonclinical or clinical data demonstrate the potential to address unmet medical need

• Features
 • Actions to expedite development and review
 • Rolling Review
Breakthrough Therapy Designation

- New designation created by FDASIA
- Criteria
 - Serious condition
 - Preliminary clinical evidence indicates that the drug may demonstrate substantial improvement over available therapy on one or more clinically significant endpoints
- Features
 - All of Fast Track features
 - Organizational commitment
Accelerated Approval Pathway (21 CFR 601, Subpart E)

• Criteria
 – Serious condition
 – Meaningful advantage over available therapies
 – Demonstrates an effect on either:
 • A surrogate endpoint-a marker, such as a laboratory measurement, radiographic image, physical sign, or other measure that is thought to predict clinical benefit, but is not itself a measure of clinical benefit
 • An intermediate clinical endpoint-a measurement of a therapeutic effect that is considered reasonably likely to predict the clinical benefit of a drug, such as an effect on IMM

• Feature
 – Approval based on an effect on a surrogate or an intermediate clinical endpoint
 – Subject to confirmatory study
Priority Review Designation

• Criteria
 • Serious condition
 • Demonstrates potential to be a significant improvement in safety or effectiveness

• Features
 • Filed marketing application reviewed in 6 months (compared to 10 months for standard review)
What about vaccines that do not meet formal criteria for breakthrough therapy?

• Even for vaccines that do not meet formal criteria for expedited programs, OVRR is committed to providing useful guidance with senior management involvement throughout the review cycle.
Accelerated approval

• Traditionally, for vaccines, this has involved approval based on immune markers thought to be predictive of protection, e.g. antibody titer
• Intermediate clinical endpoints can be considered
• Novel approaches to confirming efficacy post-licensure may also be considered
 – Powerful new epidemiological techniques may have promise in this area
 – Under discussion
OVRR will consider strategies to obtain important information earlier in development

- Increased use of phase I/II studies to facilitate go/no-go decisions
- Other adaptive study designs
 - With appropriate statistical considerations
- Early studies to compare multiple formulations or candidates (e.g., exploratory IND)
- Early discussion of these or other novel strategies recommended
Summary

• New vaccines must meet regulatory requirements for safety and efficacy
• New programs are in place to help to expedite availability of novel products
• OVRR is committed to developing additional approaches that may help sponsors obtain the information they need in order to expeditiously develop safe and effective products
• We encourage both general and product-focused discussion of these issues
Update on Vaccine Regulation: Considerations for adjuvanted vaccines

Phil Krause, OVRR/CBER/FDA
CMC Strategy Forum, Europe
May 5, 2014
Reasons for Including Adjuvants in Vaccines

<table>
<thead>
<tr>
<th>Low Immunogenicity: e.g., Subunit Vaccine</th>
<th>Low immune response population: e.g., Elderly</th>
<th>Time window: Immunization/ protection</th>
<th>Amount of antigen</th>
<th>Th1/Th2 balance</th>
<th>Need for booster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase Immuno-genicity, breadth of response</td>
<td>Increase Immune response</td>
<td>Decrease number of doses</td>
<td>Antigen sparing</td>
<td>Direct immune response</td>
<td>Longevity Immune response</td>
</tr>
</tbody>
</table>
“Novel” Adjuvants: Examples

- Monophosphoryl lipid A (MPL)
- CpG oligodeoxynucleotides
- Modified bacterial toxins
- Oil-in-water emulsions and surfactant-based
 - MF59
 - AS03

- Adjuvant systems
 - AS01: QS-21 + MPL + liposomes
 - AS02: QS-21 + MPL + oil-in-water emulsion

- Human endogenous immunomodulators
 - IL-12
 - IL-2
Examples of Licensed Vaccines Containing Adjuvants

US
- Al+++ salts in many vaccines
- MPL/AlOH$_3$: AS04
 - Cervarix (human papilloma virus vaccine)
- AS03
 - Q-Pan (H5N1) monovalent pandemic influenza vaccine

Europe
- Al+++ salts in many vaccines
- MPL/AlOH$_3$: AS04
 - Fendrix (hepatitis B vaccine)
 - Cervarix (human papilloma virus vaccine)
- MF59
 - Focetria (pandemic influenza vaccine)
 - Fluad (seasonal vaccine)
- AS03
 - Pandemrix (pandemic influenza vaccine)
Regulatory Considerations: Adjuvants

- Adjuvants are not considered active ingredients
 - 21 CFR 610.15 Constituent Material (*Ingredients, preservatives, diluents, adjuvants*)

 “All ingredients...shall meet generally accepted standards of purity and quality.

 “An adjuvant shall not be introduced into a product unless there is satisfactory evidence that it does not affect adversely the safety or potency of the product.”

- It is the adjuvanted vaccine formulation, *in toto*, that is tested in clinical trials and licensed.
Regulatory Considerations: Adjuvants

• Of primary interest is the vaccine antigen induced immune response (enhancement thereof) in the presence of adjuvant
 • Safety evaluations
 • Evaluation of “added benefit” (justification for use of the adjuvant)
• From a regulatory perspective, *if* adjuvants would be considered active ingredients
 • Expectation that each active ingredient makes a contribution to the claimed effect(s)
 • Demonstration of claimed effect by conducting phase 3 clinical trials
Adjuvants: Special Considerations

- Exhibit range of properties that invoke complex immune responses
- Mode of action of adjuvants not always known or not fully understood
- Animal models that predict safety and efficacy of a adjuvant-antigen combination not available
Adjuvanted Vaccines: Preclinical Safety

• 21 CFR 312.23(a)(8)
• Current recommendations & guidance:
 • Repeat dose toxicity
 • Usually conducted prior to clinical trials
 • To identify and characterize potential local and systemic adverse effects
 • Histopathology of full tissue list (WHO guidance) for novel adjuvants
 • Reproductive toxicity testing
 • Conducted in parallel with Phase 3 clinical trials for products intended for use in females of childbearing potential, or
 • Conducted prior to studies enrolling pregnant women
• WHO guidelines on the nonclinical evaluation of vaccine adjuvants and adjuvanted vaccines published in 2013
When & how should the “added benefit” of the adjuvant be demonstrated?

• Manufacturers should provide a rationale for the use of adjuvant in their vaccine formulation, supportive data may be derived from:

 • Preclinical studies (e.g., in *vitro assays* and/or proof-of-concept studies in animal models)

 • Early clinical immunogenicity trials comparing adjuvanted vs. unadjuvanted vaccines to include

 • evidence of enhanced immune response,
 • antigen sparing effects, or
 • other advantages

 • Data from use of adjuvant with related vaccine antigens

 • If available, information about the presumed mechanism of action of the adjuvant
When & how should the “added benefit” of the adjuvant be demonstrated?

• Because adjuvants are not considered active ingredients from a regulatory perspective manufacturers are not required to demonstrate the “added benefit” of an adjuvant in comparative phase 3 efficacy trials, e.g.,
 • Studies comparing vaccine antigen with and without adjuvant

• Thus, no à priori requirement for comparative phase 3 efficacy studies, however, such studies may be requested by the agency on a case-to case basis, e.g.,
 • Safety concerns have been identified
 • Superiority claims
Adjuvanted Vaccines: Clinical Safety

• The safety of the vaccine must be demonstrated in prelicensure safety studies

• Safety requirement for vaccine licensure (21 CFR 600.3(p))
 • Relative freedom from harmful effect
 • Taking into consideration the character of the product in relation to the condition of the recipient

• Definition of safety implies a risk/benefit evaluation
Special Considerations for Adjuvanted Vaccines: Safety Evaluation

• Suggested comparisons (early in clinical development):
 • Adjuvanted vaccine vs. saline placebo
 • Adjuvanted vaccine vs. unadjuvanted antigen

• Specific inquiries regarding symptoms consistent with autoimmune and neuroinflammatory diseases

• Longer post-vaccination follow-up than is typical for non-adjuvanted vaccines
 • Typically 12 months following vaccination
 • Follow-up SAEs, new-onset medical conditions, “adverse events of special interest”
Duration of follow-up

- Some potential adverse events beginning after vaccination may not be recognized or diagnosed until much later
- Trade-off: Longer duration can increase identification of potential AEs, but may also increase noise
- Longer follow-up is often routinely obtained in efficacy studies, but increases the complexity where product is evaluated based on immunogenicity
Special Considerations for Adjuvanted Vaccines: Safety Evaluation

- Adverse events of “special interest” (AESI)
 - Focus on autoimmune/autoinflammatory diseases
 - Examples
 - Neuroinflammatory disorders (e.g., optic neuritis, transverse myelitis)
 - Musculoskeletal and connective tissue diseases (e.g., RA, SLE, Wegener’s)
 - GI disorders (e.g., Crohn’s disease, ulcerative colitis)
Special Considerations for Adjuvanted Vaccines: Safety Evaluation

• No requirement to compare the safety of the adjuvanted to the unadjuvanted vaccine formulation in comparative phase 3 safety studies

• Safety information submitted to the Biologic License Application may include the safety experience obtained from domestic or foreign trials

• Safety experience with the same adjuvant formulated with other vaccine antigens may also contribute to the adjuvant's safety evaluation
Safety Evaluation of Adjuvanted Vaccines: Recent Discussions and Issues

- VRBPAC
 - CpG adjuvanted hepatitis B vaccine (Heplisav)
 - VRBPAC requested additional safety data
- VRBPAC
 - AS03 adjuvanted pandemic flu vaccine (Q-Pan)
 - VRBPAC members indicated safety database size was sufficient
- Potential association of Pandemrix and narcolepsy
Summary

• Regulatory pathways supporting development and approval of vaccines formulated with novel adjuvant are the same as for unadjuvanted vaccines

• Efficient planning of the development pathway for any adjuvanted vaccine requires careful attention to preclinical testing, study design, dosing decisions, and safety monitoring

• Although manufacturers are not required to demonstrate the “added benefit” of adjuvanted vs unadjuvanted vaccines in clinical comparative phase 3 studies, manufacturers should provide a justification for including an adjuvant in the vaccine

• Evaluation of safety of an adjuvanted vaccine needs to include special safety considerations