T cell therapy of inflammation with regulatory cells

Arnaud Foussat, VP Research & New Products
ISCT Annual Meeting- 23-26 April 2014, Paris
Teaching your cells to treat your disease

Cellular immunotherapy

- **Stimulate immunity**
 - Dendritic cells
 - Effectors T cells
 - CD8+
 - CD4+
 - γδ+
 - CAR-T cells
 - NK cells
 - Activated PBMCs
 - Provenge

- **Induce immune tolerance**
 - Regulatory T cells
 - Tolerogenic Dendritic cells

Cancer & infectious diseases

Inflammation, autoimmunity & transplantation
Teaching your cells to treat your disease

• **Thymic derived Treg** (*nTreg/tTreg*)

CD25⁺Foxp3⁺
CD25⁺CD127$^{\text{neg}}$
CTLA-4⁺GITR⁺PD-1⁺CD62L⁺
Naïve CD45RA⁺ vs Memory CD45RO⁺

Specific for self
→ Autoimmunity & transplant tolerance

• **Peripheral derived Treg** (*iTreg/pTreg*)

Ex Vivo IL2 + TGF-β
Induced Treg
TGF-β producing Th3 Treg
IL-10 producing Type 1 Treg

Specific for self & non-self
→ Autoimmunity & transplant tolerance
→ Chronic inflammation & allergy

Multiple sub-populations with different biology,
Repertoire, MoAs, Migratory & Proliferative capacity…..
Treg cells: Multi-target, multi-MoA approach

- Is there in vivo a dominant mechanism of action? Is a multi-MoA required for Treg activity in vivo?
- MoA might be dependent on disease, disease state, disease history, previous treatments.
- Difference in MoA can lead to differences in main cellular and molecular targets
- How to set-up a potency assay with a Treg cell product?
- Potential less patient refractoriness to multiple target approaches.

Sub-population differs in inhibitory pathways
(Cytokine driven inhibition, contact molecules, ICOS, PD-1, GITR, Granzyme A/B, CD39)

Antigen-specific activation but bystander activity

From Nature Immunology review, Ethan Shevach & Todd Davidson
Teaching your cells to treat your disease

- **Isolation of Natural pre-existing Tregs**
 - Mandatory cell surface markers,
 - Polyclonal Treg populations
 - Expansion prior to administration
 - Functionality of cells required

- **Ex vivo differentiation of Tregs**
 - Regimen of stimulation is key
 - % of Treg differentiation to control effective standard doses
 - Polyclonal & antigen-specific Treg populations
Teaching your cells to treat your disease

25 Treg clinical studies referenced

- 13 in HSCT
- 8 autoimmunity & chronic inflammation
 - Diabetes
 - Crohn’s Disease
 - Asthma
 - Uveitis
- 4 in transplantation
 - Liver transplantation
 - Kidney transplantation
- 5 completed
- 7 Industry sponsored
- All Phase I & Phase II

<table>
<thead>
<tr>
<th>Sponsors/Collaborators</th>
<th>Phase</th>
<th>Status</th>
<th>Conditions</th>
<th>Sponsors/Collaborators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanjing Medical University</td>
<td>University of Minnesota</td>
<td>I/II Recruiting</td>
<td>Acute Rejection of Liver Transplant</td>
<td>Nanjing Medical University</td>
</tr>
<tr>
<td>University Hospital of Liege</td>
<td>II</td>
<td>Recruiting</td>
<td>GVHD / acute</td>
<td>University Hospital of Liege</td>
</tr>
<tr>
<td>Dana-Farber Cancer Institute</td>
<td>II</td>
<td>Recruiting</td>
<td>GVHD</td>
<td>Dana-Farber Cancer Institute</td>
</tr>
<tr>
<td>National Cancer Institute</td>
<td>I</td>
<td>Recruiting</td>
<td>SIVD, aHCT</td>
<td>National Cancer Institute</td>
</tr>
<tr>
<td>Stanford University/Laura Johnston</td>
<td>National Institutes of Health (NHI)</td>
<td>I</td>
<td>Recruiting - Myeloid Leukemia, Chronic</td>
<td>Acute Myelogenous Leukemia</td>
</tr>
<tr>
<td>Stanford University/Ginna Laport</td>
<td>National Institutes of Health (NHI)</td>
<td>I</td>
<td>Recruiting</td>
<td>Kidney Failure, Kidney Transplant</td>
</tr>
<tr>
<td>University of California, San Francisco Juvenile Diabetes Research Foundation</td>
<td>National Institute of Allergy and Infectious Diseases (NAID)</td>
<td>I</td>
<td>Active, not recruiting - Type 1 Diabetes Mellitus</td>
<td>University of California, San Francisco Juvenile Diabetes Research Foundation</td>
</tr>
<tr>
<td>University of California, San Francisco Juvenile Diabetes Research Foundation</td>
<td>National Institute of Allergy and Infectious Diseases (NAID)</td>
<td>II</td>
<td>Completed - SVIVCD</td>
<td>University of California, San Francisco Juvenile Diabetes Research Foundation</td>
</tr>
<tr>
<td>Massachusetts General Hospital</td>
<td>Dana-Farber Cancer Institute The University of Regensburg</td>
<td>I</td>
<td>Not yet recruiting - Kidney Failure, Kidney Transplant</td>
<td>Massachusetts General Hospital</td>
</tr>
<tr>
<td>Masonic Cancer Center, University of Minnesota</td>
<td>I</td>
<td>Recruiting</td>
<td>Leukemia</td>
<td>Lymphoma</td>
</tr>
<tr>
<td>University of California, San Francisco</td>
<td>I</td>
<td>Not yet recruiting - Late Complication From Kidney Transplant</td>
<td>University of California, San Francisco</td>
<td></td>
</tr>
<tr>
<td>Masonic Cancer Center, University of Minnesota</td>
<td>I</td>
<td>Completed - Split Versus Host Disease</td>
<td>Leukemia</td>
<td>Lymphoma</td>
</tr>
<tr>
<td>H. Lee Moffitt Cancer Center and Research Institute</td>
<td>I</td>
<td>Not yet recruiting - SVIVCD</td>
<td>H. Lee Moffitt Cancer Center and Research Institute</td>
<td></td>
</tr>
<tr>
<td>Masonic Cancer Center, University of Minnesota</td>
<td>I</td>
<td>Recruiting - SVIVCD</td>
<td>Masonic Cancer Center, University of Minnesota</td>
<td></td>
</tr>
<tr>
<td>The Russian State Medical University</td>
<td>Russian Academy of Medical Sciences</td>
<td>I/II Recruiting - SVIVCD</td>
<td>The Russian State Medical University</td>
<td>Russian Academy of Medical Sciences</td>
</tr>
<tr>
<td>Masonic Cancer Center, University of Minnesota</td>
<td>I</td>
<td>Recruiting - Acute Myelogenous Leukemia</td>
<td>Acute Lymphocytic Leukemia</td>
<td>Non-Hodgkin Lymphoma</td>
</tr>
<tr>
<td>Masonic Cancer Center, University of Minnesota</td>
<td>I</td>
<td>Terminated - Graft Versus Host Disease</td>
<td>Leukemia</td>
<td>Lymphoma</td>
</tr>
<tr>
<td>Stanford University/Ginna Laport Doris Duke Charitable Foundation</td>
<td>Active, not recruiting - Leukemia</td>
<td>Leukemia</td>
<td>Myeloid Leukemia Chronic Myelogenous Leukemia</td>
<td>CML</td>
</tr>
<tr>
<td>Neostem</td>
<td>I</td>
<td>Recruiting - Asthma</td>
<td>Neostem</td>
<td></td>
</tr>
<tr>
<td>Neostem</td>
<td>I/II</td>
<td>Recruiting - Steroid Resistant Asthma</td>
<td>Neostem</td>
<td></td>
</tr>
<tr>
<td>Neostem</td>
<td>II</td>
<td>Recruiting - Transplant</td>
<td>Neostem</td>
<td></td>
</tr>
<tr>
<td>Neostem</td>
<td>I</td>
<td>Recruiting - Type 1 Diabetes Mellitus</td>
<td>Neostem</td>
<td></td>
</tr>
<tr>
<td>Neostem</td>
<td>I</td>
<td>Recruiting - Ongoing, not recruiting - Asthma, Type 1 Diabetes, Juvenile Diabetes, Autoimmune Disorders</td>
<td>Neostem</td>
<td></td>
</tr>
<tr>
<td>University of Gdansk, Poland</td>
<td>Completed</td>
<td>Type 1 Diabetes Mellitus</td>
<td>University of Gdansk, Poland</td>
<td></td>
</tr>
<tr>
<td>University of Chicago</td>
<td>Completed</td>
<td>Type 1 Diabetes Mellitus</td>
<td>University of Chicago</td>
<td></td>
</tr>
<tr>
<td>University of Perugia, Italy</td>
<td>Completed</td>
<td>HLA-haploidentical stem cell transplantation</td>
<td>University of Perugia, Italy</td>
<td></td>
</tr>
<tr>
<td>Weizmann Institute of Science, Immunology</td>
<td>Completed</td>
<td>HLA-haploidentical stem cell transplantation</td>
<td>Weizmann Institute of Science, Immunology</td>
<td></td>
</tr>
<tr>
<td>Neogene</td>
<td>II</td>
<td>Completed - Refractory CD</td>
<td>Neogene</td>
<td></td>
</tr>
<tr>
<td>Neogene</td>
<td>II</td>
<td>Completed - Refractory CD</td>
<td>Neogene</td>
<td></td>
</tr>
</tbody>
</table>
Teaching your cells to treat your disease

Published data

Freshly isolated donor derived
CD4+CD25+ Treg
(Di Anni et al, Blood, 2011)

In vitro expanded third party
UCB derived CD4+CD25+ Treg
Anti-CD3+anti-CD28 Beads + IL-2
(Brunstein et al, Blood, 2011)

In vitro expanded family donors
derived CD4+CD25+CD127neg
Anti-CD3+anti-CD28 Beads + IL-2
(Trzonkowski et al, clinical Immunology, 2014)

IL-10 anergized allo-specific
donor T cells
Type 1 Treg cells induced upon MLR + IL-10
(Bachetta et al, Frontiers in Immunology, 2014)

13 Treg in HSCT

13 Phase I to phase II clinical trials referenced

- Prevention & treatment
- Polyclonal vs allo-specific
- Tolerability demonstrated
 - No increase in infection
 - Fast immune reconstitution
- Preliminary efficacy data
 - Less high grade GVHD
 - Alleviation of symptoms
- No controlled study yet
- Issue of Immunosupression
- Fine tuning of the dose

Expansion

Prevention & treatment
Polyclonal vs allo-specific
Tolerability demonstrated
- No increase in infection
- Fast immune reconstitution
Preliminary efficacy data
- Less high grade GVHD
- Alleviation of symptoms
No controlled study yet
- Issue of Immunosupression
- Fine tuning of the dose

MLR
4 Treg in Solid Organ Transplant

Teaching your cells to treat your disease

Planned or ongoing

Autologous allo-Ag-specific CD4+CD25+ Treg

IL-2+TGFbeta + recipient’s DC

(NCT01624077)

Autologous allo-specific CD4+CD25+ Treg

MLR with CTLA-4 Ig

(NCT02091232)

Polyclonal autologous expanded CD4+CD25+CD127neg Treg

(NCT02088931)

Polyclonal autologous expanded CD4+CD25+CD127neg Treg

(NCT01446484)

4 Phase I to phase II clinical trials referenced in liver (1) and kidney (3) transplantation

- No results published yet
- Polyclonal vs allogeneic vs Allo-Ag-specific approaches
- Issue of immunosuppressive regimen
- Dose ≈ 10^6/kg with Ag-specific Tregs
- Dose ≈ 2.10^8 to 10^9 with autologous
Teaching your cells to treat your disease

Published data

Expanded Ag-specific Type 1 Treg in Crohn’s Disease
Ova-specific, in vitro expanded
(Desreumaux et al, Gastroenterology 2012)

Autologous polyclonal

CD4+CD25+CD127 Treg in T1D
Anti-CD3+anti-CD28 Beads + IL-2
(Marek, Diabetes care 2012)

Ongoing

Autologous polyclonal

CD4+CD25+Treg in Uveitis
Anti-CD3+anti-CD28 mAb + IL-2
(La Pitié Salpetrière Hospital, Paris)

Autologous polyclonal

CD4+CD25+CD127 Treg in T1D
Anti-CD3+anti-CD28 Beads + IL-2
(NCT01210664)

8 Phase I to phase II clinical trials referenced

- Polyclonal vs Ag-specific
- Tolerability demonstrated
- Preliminary efficacy data
- No controlled study yet
- Fine tuning of the dose
- Dose ≈ 10^6 to 10^9
Teaching your cells to treat your disease

Isolation of a subpopulation
- GMP sorting (Flow cytometry vs immuno-affinity)
- Single marker or gene expression profile
- Purity of the isolated populations (first Treg populations < 60% Foxp3+ cells)

Potency assay
- Issue of multiple putative mechanisms of action
- Phenotypic evaluation of different inhibitory molecules (cytokines, surface markers, enzymes, cytolytic granules….)
- In vitro assays (cell contact inhibition, inhibition with soluble factors)
- In vivo/in vitro blocking experiments
- Potency can include migration/proliferative activity/cell adhesion

T-cell therapy/cell therapy challenges
- GMP manufacturing, closed system & automation
- Scale-up for late stage clinical trial
- Batch-to-batch comparability (identity/potency/purity)
Potential toxicity of Treg cells could be related to:

- **Purity**
 - Control of proinflammatory cell content (Th17…)
 - Patients with inflamed conditions may have circulating pro-inflammatory cells

- **Tumorigenicity/uncontrolled proliferation**
 - Karyotyping, in vitro persistence, dependence to TCR stimulation & growth factors, clonogenicity assays, telomere shortening capacity
 - In vivo long-term studies with cell tracking

- **Plasticity/de-differentiation**
 - In vitro & in vivo plasticity assays (Th17, Th1)
 - Stability of phenotype, potency and epigenetic markers in proinflammatory promoting culture conditions
 - Tregs from inflammatory patients might be more prone to plasticity

- **Indiscriminate immunosuppression**
 - In vivo toxicology studies
 - Patients clinical monitoring especially in patients with a depressed immune system
Teaching your cells to treat your disease

Alteration of nTregs in chronic inflammation & autoimmunity

CD25+ FoxP3+ Treg polyclonal deficiency in autoimmune & chronic inflammatory diseases

- Cause or consequence ➔ Treg are normalized in remitting patients
- Issues of CD25, Foxp3 & Treg markers also expressed by proinflammatory cells

Defect in Ag-specific cell number, differentiation pathway and/or molecular signalling

- **Alteration of CD46 mediated IL-10 Treg differentiation in MS patients**
 Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis (Astier AL, J Clin Invest)

- **Alteration of Desmoglein-3 specific Tr1 cells in pemphigus vulgaris**
 Type I regulatory T cells specific for desmoglein-3 are more frequently detected in healthy individuals than in patients with pemphigus vulgaris (Veldman C, J Immunol. 2004)

- **Alteration of CTLA-4 intracellular signalling in Rheumatoid Arthritis patients**
 Defects in CTLA-4 are associated with abnormal regulatory T cell function in rheumatoid arthritis. (Flores-Borja F, PNAS, 2008)

- **Enhanced plasticity in Tregs from Rheumatoid Arthritis patients**
 Regulatory T cells in rheumatoid arthritis showed increased plasticity toward Th17 but retained suppressive function in peripheral blood. (Wang T, Ann Rheum Dis, 2014.)

 ➔ **Autologous re-infusion of patients un-manipulated Treg cells might not be an ideal approach**
Understanding the Treg compartment defects in patients can help to define the better strategy

- Antigen specific versus polyclonal Tregs
- Natural versus induced Treg cells
- Gene engineering of Treg cells

Regeneration of a defective compartment

- Induction of tolerance
 - Persistence or induction of memory

Pharmacological inhibition of inflammation

- Inhibition of inflammation
- Induction tolerance
 - Persistence or induction of memory
Safety and Efficacy of Antigen-Specific Regulatory T-Cell Therapy for Patients With Refractory Crohn’s Disease

PIERRE DESREUMAUX,* ARNAUD FOUSSAT,† MATTHIEU ALLEZ,§ LAURENT BEAUGERIE,* XAVIER HÉBUTERNE,* YORAM BOUHNIK,* MARIA NACHURY,‡ VALÉRIE BRUN,‡‡ HERVÉ BASTIAN,‡ NATHALIE BELMONTE,* MICHEL TICCHIONI,* AGNÈS DUCHANGE,* PATRICIA MOREL-MANDRINO,* VIRGINIE NEVEU,‖ NATHALIE CLERGET-CHOSSAT,*‡‡ MIGUEL FORTE,*‡ and JEAN-FRÉDÉRIC COLOMBEL*

Ovasave® development

Ovasave®: autologous ovalbumin-specific type 1 regulatory cells

Percentage of Patient in CDAI response/remission (all doses, n=20)

- Week 5: 40 Response, 15 Remission
- Week 8: 40 Response, 10 Remission

Percentage of patients in CDAI Response or Remission at 10^6 (n=8)

- Week 5: 75 Response, 38 Remission
- Week 8: 75 Response, 25 Remission

Mean (±SEM) CDAI variation at 10^6 (n=8)

Analysis of 8 patients receiving 10^6 cells

CDAI response = decrease 100, CDAI remission <150
Biomarker of clinical response: PBMC proliferative activity in response to Ovalbumin

10^6 cohort

CDAI vs Ova-response

Supports efficacy and mechanism of action of Ova-Treg cells in CD patients

Phase IIb to start in H2 2014 in refractory Crohn’s Disease patients
Treg cells represent a novel therapeutic approach for treatment of chronic inflammation, autoimmunity and transplantation.

- Natural anti-inflammatory activity
- Multiple MoA and multiple cellular and molecular targets

- Early development stage
- Tolerability of the approach demonstrated, encouraging preliminary efficacy observed
- Need fine tuning of doses and comparative analysis of different sub-populations and strategies