RNA-pulsed Dendritic Cells for Immunotherapy of Cancer

Dolores J. Schendel
Institute of Molecular Immunology
isct, Rotterdam, May 2011
DC biology: multiple signals for lymphocytes

GM-CSF

Mono → **IDC** → **Maturation Cocktail** → **mDC** → **Tumor Immunity**

signal 1
- RNA-encoding tumor antigens

signal 2
- positive costimulation
- negative costimulation

signal 3
- IL-12\(^{high}\)
- IL-10\(^{low}\)

Th1 / CTL

NK
Dendritic cell vaccines

Third generation dendritic cell vaccines: fast production (3d) and TLR activation
Generation of mature DCs in three days

7-day protocol

- **d0**: Monocytes
 - IL-4 GM-CSF
- **d1**: iDC
 - IL-4 GM-CSF
- **d2**: 3d-mDC
 - Maturation Cocktail
- **d3**: iDC
 - Maturation Cocktail
- **d4**: 7d-mDC

3-day protocol

- **d0**: Monocytes
 - IL-4 GM-CSF
Dendritic cell maturation cocktails utilizing TLR3 and TLR7/8 ligands

<table>
<thead>
<tr>
<th>Cocktail</th>
<th>Inflammatory cytokines interferons/additives</th>
<th>TLR ligands</th>
</tr>
</thead>
<tbody>
<tr>
<td>4C</td>
<td>TNF, IL-1β, IL-6, PGE2</td>
<td>none</td>
</tr>
<tr>
<td>Jonuleit</td>
<td>TNF, IL-1β, IFN-γ, PGE2</td>
<td>poly(I:C)</td>
</tr>
<tr>
<td>5C</td>
<td>TNF, IL-1β, IFN-γ, PGE2</td>
<td>TLR 3</td>
</tr>
<tr>
<td>5C + R848</td>
<td>TNF, IL-1β, IFN-γ, PGE2</td>
<td>poly(I:C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R848</td>
</tr>
<tr>
<td>5C + CL075</td>
<td>TNF, IL-1β, IFN-γ, PGE2</td>
<td>poly(I:C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL075</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TLR 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TLR 7/8</td>
</tr>
</tbody>
</table>
Comparable phenotypes of 3d versus 7d mDC
Expression of costimulatory molecules: impact of time and maturation cocktails
Antigen expression is strong in 3d mDC after electroporation of ivt-RNA.
3d mDC migrate towards CCR7 signals

Chemokine directed migration

![Diagram showing mDC migrating towards CCL19 signals after 2 hours.](image)
IL-12(p70) secretion from 3d mDC upon CD40 ligation: signal 3 assay

24 h

cytokine response

mDC + murine fibroblasts

IL-12p70 [pg/ml]

IL-10 [pg/ml]

4C
5C
4C
5C
5C
5C

R848
CL075

n.s.

p=0.014
p=0.008

10^0
10^1
10^2
10^3
10^4
10^5

HelmholtzZentrum münchen
German Research Center for Environmental Health
Innate immunity: TLR 7/8 signals improve NK cell activation

activated NK cells (CD3-) CD56+/CD69+

DC-NK Cocultures

HelmholtzZentrum münchen
German Research Center for Environmental Health
Innate immunity: TLR 7/8 signals improve NK cell function

1) Measure IFN\(_\gamma\) in 24 h medium

2) Measure killing of K562 targets
Adaptive immunity: Th1/Tc1 polarization of allogeneic lymphocytes using TLR-activated 3d mDC

Generate 3d-mDC

7d coculture mDC + allo-T cells

ICS phenotype of T cells (5 h PMA/ionomycin)

IL-4

unstim. 4C

5C + R848 5C + CL075

IFN-γ

% IFN-γ positive T cells

% CD4 IFN-γ % CD8 IFN-γ

p < 0.01

w/o 4C 5C+ R848 5C+ CL075

* **

Helmholtz Zentrum München
German Research Center for Environmental Health
Adaptive immunity: Superior induction of antigen-specific T cells using TLR-activated 3d mDC

Melan-A pulsed mDC

7d coculture of mDC and autologous T cells

CD8

unstim.

21.2

5C

14.5

5C + R848

21.4

5C + CL075

22.8

% specific lysis

E:T

0 20 40 60 80 100

10

5C

4C

w/o DC

4C

5C

5C+R848

5C+CL075

w/o DC

Mel 624.38

Mel A375
TLR-activated 3d mDC display characteristics important for anti-tumor vaccines

- Fast production of mDC (3 days)
- High expression of antigens (ivt-RNA)
- Stable phenotype after maturation
- High IL-12p70 and low IL-10 production
- Superior activation NK cells
- Superior activation of antigen-specific T cells
- Polarization of Th1/Tc1 responses
Planned Clinical Phase I/II Trial:

High risk AML patients with minimal residual disease

Supported by SFB-455, BayImmuNet and HGF Alliance for Immunotherapy of Cancer

RNA-encoding tumor antigens
Survival in relation to karyotype

Haferlach et al. JCO 2003

p < 0.0001
Acknowledgments

Stefani Spranger
Maja Bürdek
Miran Javorovic
Christiane Geiger
Iris Bigalke

Marion Subklewe
Daniela Dörfel
Barbara Bock
Felix Lichtenegger
Wolfgang Hiddemann

Institut für Molecular Immunology
Helmholtz Centrum Munich

Gunnar Kvalheim

Med. Clinik III
Hematologie / Oncology
Ludwig-Maximilians-University, München

Department of Cell Therapy
The Norwegian Radium Hospital, Oslo

Supported by grants of the HGF Alliance for Immunotherapy of Cancer, BayImmuNet and the DFG (SFB-TR36 and SFB-455)