Adipose-Derived Cells: How Does That Translate?

17th Annual ISCT Meeting: Technical Session 5 Adipose Mesenchymal Progenitors
May 21, 2011 – Rotterdam, The Netherlands

JM Gimble MD PhD
Pennington Biomedical Research Center
Baton Rouge, LA, USA
gimblejm@pbrc.edu

Disclosures: Co-founder-LaCell LLC, Consultant-ATRM/Johnson & Johnson
Overview

• How Does Adipose Tissue Stack Up Against Bone Marrow As A Stromal/Stem Cell Source?
• What Do We Need To Translate Adipose-Derived Cells To The Clinic?
Adipose-derived Cell Types

- Stromal Vascular Fraction (SVF) Cells
 - Freshly isolated
 - Heterogeneous
 - Suspended, not adherent

- Adipose-derived Stromal/Stem Cells (ASC)
 - Culture expanded
 - Plastic adherent
 - Relatively homogeneous relative to SVF cells
Adipose vs. Bone Marrow - Pros & Cons

ASC
• Abundant
• Accessible
• $>10^2$ to 10^3 Superior Yield per Unit Tissue Volume
• Replenishable
• Clinical Trials – 36*

BMSC
• Well Characterized
• Multi-Potent
• Allogeneic Transplantation
• Regulatory Approval
• Manufacturing Know How
• Clinical Trials – 143*

*www.clinicaltrials.gov
BMSC vs ASC Antibody Gallery
Gray Filled = BMSC
Black line = ASC

ASC vs. BMSC Cytokine Profile: Similar, Not Identical

<table>
<thead>
<tr>
<th></th>
<th>Flt3L</th>
<th>G-CSF</th>
<th>GM-CSF</th>
<th>HGF</th>
<th>IL-1α</th>
<th>IL-6</th>
<th>IL-7</th>
<th>IL-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASC</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>BMSC</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>IL-11</th>
<th>IL-12</th>
<th>LIF</th>
<th>M-CSF</th>
<th>SCF</th>
<th>TNFα</th>
<th>VEGF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASC</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>BMSC</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Adapted from Kilroy G et al. J Cell Physiol 212:702, 2007
ASC vs. BMSC

- Overlapping but Distinct Immunophenotypes
- Overlapping but Distinct Cytokine Profiles
- Similar Immunomodulatory Function
- Differentiation Profiles
 - BMSC Reported to Exhibit Superior Osteogenesis
 - ASC Reported to Exhibit Superior Adipogenesis
 - Could epigenetic mechanisms account for fidelity to tissue of origin?

Clinical Osteogenic ASC Application

Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells

REGEA Institute, Tampere, & University of Helsinki, Finland
Clinical Approach

- 65 yr old male 28 months post hemimaxillectomy for keratocyst
- Harvest autologous adipose tissue and expand ASC in autologous serum
- Mix with HA/TCP and BMP2 inside titanium cage
- Implant in rectus abdominis muscle above epigastric artery for 6-8 months
- Transfer as free flap to repair palatal defect with anastomosis to facial artery
- Subsequent dental implants
- Success out to 1.5 year follow up
Repair of Soft Palate Defect

Before

After

Adipose vs. Bone Marrow

Conclusion(s)

• Separate But Equal –
 – Cells From Both Tissue Sources Have Unique Advantages & Limitations
 – Optimal Culture and Processing Conditions May Be Tissue Specific
 – Development of Consensus Specifications for ASC and SVF Cells May Facilitate Future Product Development, Standardization & International Harmonization
Moving to the Clinic - Do We Need A Dictionary For Translation?

- Adipose (English – US)
- Adipose (English – UK)
- Vet (Dutch)
- Adipeux (French)
- Adiposo (Spanish)
- Fettvävnad (Swedish)
- Lihava (Finnish)
- (Arabic)
- (Hebrew)
- (Chinese)
- (Japanese)
- Жировой (Russian)
- Λιπώδης (Greek)
- Tłuszczowej (Polish)

Translations Courtesy of Google translate
Or Do We Need A Roadmap?
Travel Destinations

Regulatory Based
• EMEA/FDA
• Closed System Devices
• Donor Specifications
• Reagent Sourcing
• Collagenase Enzyme Classifications

Assay Dependent
• Product Acceptance Criteria
• Shipping Studies
• Sterility Testing Criteria
• Cryopreservation
• Tumorigenesis
• Serum Substitutes
• Xenoprotein Free

Gimble et al. Stem Cells 29:749, 2011
Closed System Devices

Harvest fat (adipose) tissue → Separate and concentrate regenerative cells → Return cells / tissue to same patient in approximately one hour

Cytori Therapeutics/GE Celution™ 700
Tumorigenesis

• In vitro cultured ASC have been found to undergo transformation
 • Retraction Cancer Research 70:6882, 2010
Animal Protein Free Reagents

• Non-porcine sources of trypsin

• Human serum culture medium
 – Bieback et al. Stem Cells 27:2331, 2009

• Xenoprotein-free culture medium
Ra et al. *Safety of Intravenous Infusion of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Animals and Humans*

- Korean biotech report of regulatory pre-IND & IND studies:
 - Isolation, immunophenotype & multi-lineage differentiation
 - Karyotype & single nucleotide polymorphism analyses
 - Survival/viability/stability in cold storage for 72 hrs
 - Toxicology & tumorigenicity studies in vivo
- Phase I clinical safety trial for spinal cord injury

Stem Cells & Develop 2011 (epub)
Setting the course...

• Continue to promote peer reviewed publications of academic & biotech pre-IND & IND experience (both success & failure)
• Development of international guidelines & standards describing SVF cells & ASC by ISCT, IFATS, & other societies reflecting the highest scientific, manufacturing & regulatory standards

Gimble, Bunnell, Chiu & Guilak
Stem Cells & Develop 2011 In Press
Evidenced Based Medicine Approach

• Prepare the literature for future meta-analyses validating the efficacy & safety of adipose-derived cell products
• Advance to Level 1 & 2 studies

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Expert opinion without support from physiological bench science or first principles</td>
</tr>
<tr>
<td>4</td>
<td>Poorly controlled case series</td>
</tr>
<tr>
<td>3</td>
<td>Individual case controlled study</td>
</tr>
<tr>
<td>2</td>
<td>Retrospective cohort study</td>
</tr>
<tr>
<td>1</td>
<td>Randomized case controlled prospective trial</td>
</tr>
</tbody>
</table>
Scientific Acknowledgements

• (ASI) L Aust, B Devlin, T du Laney, S Foster, YD Halvorsen, K Hicok, A Kloster, A Sen, B Wilkison, D Willingmyre
• (Beth Israel) E Rosen, S Kang, L Tsai
• (Cognate) S Garrett, L Hammill, K McIntosh, J Mitchell, A Smith
• (Columbia Univ) G Vunjak-Novakovic, M Frohlich, D Marolt, L Wan
• (DUMC) H Awad, G Erickson, B Estes, B Fermor, F Guilak, K Lott, H Rice, K Safford, R. Storms, D Wang, Q Wickham
• (Hebrew) Y Gafni, D Gazit, Z Gazit, D Pelled, D Sheyne
• (NIH) S Gronthos, P Robey
• (LSU) R Devireddy, J Johnson, M Lopez, R Moore, N Spencer, S Thirumala, M Vidal
• (LSUHSC-NO) V Dasa, A King, K Khoobehi
• (Nupotential) – R Power, J Staszkiewicz
• (Rutgers) I Raskin, D Ribnicky
• (Tufts Univ) D Kaplan, J Choi, L Bellas
• (Tulane) B Bunnell, E Chiu, T Frazier, R Izadpanah, A Lin, B Rowan, A Tucker
• (Univ Colorado) R Eckel, T Hernandez
• (Univ Minho) R Reis, P Carvalho, M Gomes, A Salgado, N Nunes
• (UNC-CH) L Cooper, J Harp, J Ting
• (UPitt) J Delany, JP Rubin, K Marra
• (Univ Tarragona) J Vendrell Ortega, G Pachon
• (Zen-Bio/Vesta) B Buehrer, B Cheatham, J Ruiz
• (Baton Rouge Plastic Surgeons) A Reilley, M Teague, J Wade
Thanks for your attention!
Questions?