Potency & Release Testing for unrelated donor cord blood units

Joanne Kurtzberg, MD
Robertson Cell and Translational Therapy Program
Pediatric Blood and Marrow Transplant Program
Carolinas Cord Blood Bank
Duke University Medical Center
Selecting CBUs for Transplantation

◆ At the time of Search:
 ◆ Pre-Cryo Total Nucleated Cell (TNC) Count
 ◆ Human Leukocyte Antigen (HLA) Match
 ◆ ?CD34 Pre-Cryo
 ◆ ?CFU Pre-Cryo

◆ At CT: after potency/release testing:
 ◆ Colony Forming Units (CFU)
 ◆ CD34 (+/-) viability
 ◆ ALDHbright
 ◆ TNC +/- Viability
 ◆ High Resolution HLA +/- HLA C
 ◆ ?NIMA
 ◆ ?KIR
Post-Thaw CFU Predicts Engraftment and Survival (p=<0.0001)

Overall Survival by CFU x 10^4/kg Reinfused

- CFU measured on thawed CBU bag
- 2 week assay
- Subjective results
- Difficult to standardize

ALDH bright Assay

- Enzyme activity: Oxidation of aldehydes to carboxylic acids
- Enriched in hematopoietic stem cells
- Clinically relevant for transplantation
- Cells must be viable to score positive in assay
- High correlation with CFUs (nearly 1:1 in fresh cord blood)
Cryopreserved Cord Blood Unit

- HLA CT
- TNC/uL
- CFU
- CD45
- 7-AAD
- Gly-A
- CD34
- ALDH bright
Thaw segment and remove blood with a needle

Dilute with Dextran/Albumin

Wash with HSA/PBS

Centrifugation (2000 g X 30')

30 minute incubation at 37°C with Aldecound Reagent
15 minute incubation on ice for phenotyping

Centrifugation (1200 g X 5')

Perform flow cytometry and analyze

100,000 Cells for HPCA

Activated Aldecound Reagent

CD45, CD34 and Gly A Antibodies

Fluorescent Aldecound Reagent

ALDH^+ cells
CD45^+ cells
RBC and Nonviable cells for exclusion
CD34^+ cells

Spot 2-3 drops of blood on FTA card. Ship overnight to HLA typing lab.
ALDHbr Assay: Flow Cytometry
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>W158211491674PH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Type</td>
<td>Segment</td>
</tr>
<tr>
<td>Bank ID</td>
<td>CCBB</td>
</tr>
<tr>
<td>Date of Receipt</td>
<td>03-NOV-2011</td>
</tr>
<tr>
<td>Site</td>
<td>Duke</td>
</tr>
<tr>
<td>Instrument</td>
<td>Accuri C6</td>
</tr>
<tr>
<td>Operator</td>
<td>Pamy Noldner</td>
</tr>
<tr>
<td>Analyst</td>
<td>Pamy Noldner</td>
</tr>
<tr>
<td>Reviewer</td>
<td>Kevin Shoulars</td>
</tr>
<tr>
<td>Date of Acquisition</td>
<td>03-NOV-2011</td>
</tr>
<tr>
<td>Starting Time</td>
<td>14:18:44:12</td>
</tr>
<tr>
<td>Ending Time</td>
<td>14:21:04:45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total CD45 events</th>
<th>101384</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CD34 events</td>
<td>752</td>
</tr>
<tr>
<td>CD34 as a % of CD45</td>
<td>0.74%</td>
</tr>
<tr>
<td>Viable CD34 events</td>
<td>473</td>
</tr>
<tr>
<td>Viable CD34 as a % of Viable CD45</td>
<td>0.58%</td>
</tr>
<tr>
<td>Total ALDHbr Events</td>
<td>568</td>
</tr>
<tr>
<td>ALDHbr % of Total Events</td>
<td>0.2405%</td>
</tr>
<tr>
<td>Viable CD45+ ALDHbr Events</td>
<td>489</td>
</tr>
<tr>
<td>ALDHbr as a percent of Viable CD45</td>
<td>0.5980%</td>
</tr>
<tr>
<td>Total ALDHbr cells (% +CD34/+CD45)</td>
<td>86.91%</td>
</tr>
<tr>
<td>CD34/ul</td>
<td>5.77</td>
</tr>
</tbody>
</table>

Current Requirements for release:

- Viable CD45 >40%
- ALDH^{br} % of CD45 ≥0.1%
- CFU Growth

Viability (7AAD- and GLY-A- cells as a % of CD45)	80.65%
Viability (7AAD- and GLY-A- cells as a % of CD34)	50.98%
Viable CD34 events	473
Viable CD34 as a % of Viable CD45	0.58%
Viable ALDHbr Events	489
ALDHbr as a percent of Viable CD45	0.5980%
BFU-E (per 1 X 10⁵ WBC)	48.75
CFU-GM (per 1 X 10⁵ WBC)	41.25
CFU-GEMM (per 1 X 10⁵ WBC)	1.25
Total CFU (per 1 X 10⁵ WBC)	91.25
Retrospective Study

38 CBUs transplanted at Duke with available segments were selected

21 Rapid Engrafters (<20 days to ANC 500)
17 Non Engrafters

Total ALDHbr x10e5 (infused per kg) based on segment data was best predictor of engraftment. CFU also predictive $p=0.006$

Shoulars et. al. ISCT, 2009 and 2012
Segments for Confirmatory Typing

- Since Feb 2010 all segments requested for confirmatory typing (CT) through the Carolinas Cord Blood Bank are being assayed.

- Samples are taken from each segment for HLA typing, CFUs and the ALDHbr assay.

- Data from 1625 segments are presented.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segments Assayed</td>
<td>1625</td>
</tr>
<tr>
<td>Cords Transplanted</td>
<td>283</td>
</tr>
<tr>
<td>Outcome Data Received</td>
<td>115</td>
</tr>
</tbody>
</table>
Correlation: ALDHbr and CD34 with CFU

$y = 0.2619x$
$R^2 = 0.7151$

$y = 0.0522x + 39.897$
$R^2 = 0.0801$
Correlation of ALDHbr with Engraftment

Engraftment rate

- 0.0-0.1% ALDHbr = 33.33%
- 0.1-0.2% ALDHbr = 88%
- 0.2-0.3% ALDHbr = 93%
- 0.3-0.4% ALDHbr = 100%

Above 0.4% ALDHbr = 100%
ALDHBr and CFUs Correlate with Engraftment
ALDHbr Content of Segments Best Predicts Time to Engraftment

- t ratio = -2.55, p value = 0.0122
- t ratio = -1.62, p value = 0.1082
- t ratio = 0.00, p value = 1.0000
Stability vs Potency

• FDA requires a stability protocol and expiry
 – Stability implies lack of loss of potency over time in storage
 – Expiry reflects stability

• Potency, performed prior to CBU release from a TC, better represents the health of the CBU
 – Potency evaluates ability of the UCB unit to confer hematopoietic rescue, regardless of time in storage or other factors.
Stability vs Potency

• There is no data to suggest that cord blood unit potency decreases as a function of time in storage.

• Cord blood units may lose potency due to damage occurring during cryopreservation or thawing.

• To date, this damage cannot be predicted by precryopreservation characteristics of a given cord blood unit.
Clinical Outcomes

Distributions

Days to ANC500

<table>
<thead>
<tr>
<th>Quantiles</th>
<th>Days to Plt 50K</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.0% maximum</td>
<td>104</td>
</tr>
<tr>
<td>99.5%</td>
<td>100.75</td>
</tr>
<tr>
<td>97.5%</td>
<td>54.75</td>
</tr>
<tr>
<td>90.0%</td>
<td>37</td>
</tr>
<tr>
<td>75.0% quartile</td>
<td>28</td>
</tr>
<tr>
<td>50.0% median</td>
<td>22</td>
</tr>
<tr>
<td>25.0% quartile</td>
<td>17</td>
</tr>
<tr>
<td>10.0%</td>
<td>14</td>
</tr>
<tr>
<td>2.5%</td>
<td>12</td>
</tr>
<tr>
<td>0.5%</td>
<td>7.75</td>
</tr>
<tr>
<td>0.0% minimum</td>
<td>7</td>
</tr>
<tr>
<td>Moments</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>24.722892</td>
</tr>
<tr>
<td>Std Dev</td>
<td>12.281621</td>
</tr>
<tr>
<td>Std Err Mean</td>
<td>0.7783161</td>
</tr>
<tr>
<td>Upper 95% Mean</td>
<td>26.255844</td>
</tr>
<tr>
<td>Lower 95% Mean</td>
<td>23.189939</td>
</tr>
<tr>
<td>N</td>
<td>249</td>
</tr>
</tbody>
</table>

Days to ANC500

<table>
<thead>
<tr>
<th>Quantiles</th>
<th>Days to Plt 50K</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.0% maximum</td>
<td>471</td>
</tr>
<tr>
<td>99.5%</td>
<td>471</td>
</tr>
<tr>
<td>97.5%</td>
<td>223.85</td>
</tr>
<tr>
<td>90.0%</td>
<td>142.8</td>
</tr>
<tr>
<td>75.0% quartile</td>
<td>104</td>
</tr>
<tr>
<td>50.0% median</td>
<td>67</td>
</tr>
<tr>
<td>25.0% quartile</td>
<td>51</td>
</tr>
<tr>
<td>10.0%</td>
<td>41</td>
</tr>
<tr>
<td>2.5%</td>
<td>31.85</td>
</tr>
<tr>
<td>0.5%</td>
<td>24</td>
</tr>
<tr>
<td>0.0% minimum</td>
<td>24</td>
</tr>
<tr>
<td>Moments</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>84.709845</td>
</tr>
<tr>
<td>Std Dev</td>
<td>56.764763</td>
</tr>
<tr>
<td>Std Err Mean</td>
<td>4.086017</td>
</tr>
<tr>
<td>Upper 95% Mean</td>
<td>92.76909</td>
</tr>
<tr>
<td>Lower 95% Mean</td>
<td>76.650599</td>
</tr>
<tr>
<td>N</td>
<td>193</td>
</tr>
</tbody>
</table>

Summary Statistics

Days to ANC500

<table>
<thead>
<tr>
<th></th>
<th>Days to Plt 50K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>20.46</td>
</tr>
<tr>
<td>Std Dev</td>
<td>7.0049836</td>
</tr>
<tr>
<td>Std Err Mean</td>
<td>0.9906543</td>
</tr>
<tr>
<td>Upper 95% Mean</td>
<td>22.450794</td>
</tr>
<tr>
<td>Lower 95% Mean</td>
<td>18.469206</td>
</tr>
<tr>
<td>N</td>
<td>50</td>
</tr>
</tbody>
</table>

Days to ANC500

<table>
<thead>
<tr>
<th></th>
<th>Days to Plt 50K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>61.195652</td>
</tr>
<tr>
<td>Std Dev</td>
<td>29.618778</td>
</tr>
<tr>
<td>Std Err Mean</td>
<td>4.3670505</td>
</tr>
<tr>
<td>Upper 95% Mean</td>
<td>69.991343</td>
</tr>
<tr>
<td>Lower 95% Mean</td>
<td>52.399961</td>
</tr>
<tr>
<td>N</td>
<td>46</td>
</tr>
</tbody>
</table>
Relationship of Cell Dose and Time in Storage of CBU to Engraftment

- **PreFrz NCC (in 10^7) per Kg**
 - Leverage Plot
 - Days to ANC 500
 - Leverage Residuals
 - PreFrz NCC (in 10^7) per Kg Leverage, P=0.0018

- **DaysFromCollToInfusion**
 - Leverage Plot
 - Days to ANC 500
 - Leverage Residuals
 - DaysFromCollToInfusion Leverage, P=0.0704
Post thaw recoveries of TNCC, CFU and CD34 as a function of time in storage

Bivariate Fit of Recovery TNCC By DaysFromColleToInfusion

Summary of Fit
- Recovery TNCC = 0.8006416 - 1.7678e-5*DaysFromColleToInfusion
- Rsquare = 0.000576
- R2Adjusted = 0.00051
- Root Mean Square Error = 0.17416
- Mean of Response = 0.77988
- Observations (or Sum Wgts) = 680

Analysis of Variance
- Source: Model 1 0.136122 0.136122 4.4878
- Source: Error 678 20.967702 0.94503 0.0345

Parameter Estimates
- Term: Intercept 0.8006416 0.012054 66.44 < 0.0001
- Term: DaysFromColleToInfusion -1.7678e-5 8.345e-6 -2.12 0.0345

Bivariate Fit of Recovery CFU By DaysFromColleToInfusion

Summary of Fit
- Recovery CFU = 0.2806612 - 0.911e-9*DaysFromColleToInfusion
- Rsquare = 0.000551
- R2Adjusted = -0.00867
- Root Mean Square Error = 0.278414
- Mean of Response = 0.275515
- Observations (or Sum Wgts) = 110

Analysis of Variance
- Source: Model 1 0.004862 0.004862 0.0028
- Source: Error 108 0.3715284 0.07554 0.0345

Parameter Estimates
- Term: Intercept 0.004862 0.004862 0.0028
- Term: DaysFromColleToInfusion -0.911e-9 5.90 < 0.0001

Bivariate Fit of Recovery CD34+ By DaysFromColleToInfusion

Summary of Fit
- Recovery CD34+ = 0.7265346 + 2.1707e-6*DaysFromColleToInfusion
- Rsquare = 0.000034
- R2Adjusted = -0.00866
- Root Mean Square Error = 0.26511
- Mean of Response = 0.728743
- Observations (or Sum Wgts) = 117

Analysis of Variance
- Source: Model 1 0.0002735 0.000275 0.0038
- Source: Error 115 0.0829612 0.070283 0.0002

Parameter Estimates
- Term: Intercept 0.7265346 0.042956 16.91 < 0.0001
- Term: DaysFromColleToInfusion 2.1707e-6 3.468e-5 0.06 0.9902
Correlations with ALDHbr, CD34 and CFU Measured on a Segment with Engraftment

Fit Y by X Group
- Bivariate Fit of Days to ANC 500 By ALDHbr (% of viable CD45)
- Bivariate Fit of Days to ANC 500 By CD34 (% of viable CD45)
- Bivariate Fit of Days to ANC 500 By CFU (Total Post Seg Thaw in 10^5)

Linear Fit
Days to ANC 500 = 22.082797 - 2.563832*ALDHbr (% of viable CD45)

Summary of Fit
- RSquare: 0.002585
- RSquare Adj: -0.00616
- Root Mean Square Error: 10.69188
- Mean of Response: 21.19966
- Observations (or Sum Wgts): 115

Analysis of Variance
- Source: DF Squares Mean Square F Ratio
 - Model: 1 33.776 33.776 0.2955
 - Error: 114 13032.062 114.316 Prob > F
 - C. Total: 115 13065.828

Parameter Estimates
- Term: Estimate Std Error t Ratio Prob>|t|
 - Intercept: 22.082797 1.919728 11.59 <0.001*
 - ALDHbr (% of viable CD45): -2.563832 4.716724 -0.54 0.5878

Linear Fit
Days to ANC 500 = 20.936154 + 0.295284*CD34 (% of viable CD45)

Summary of Fit
- RSquare: 0.000234
- RSquare Adj: -0.009854
- Root Mean Square Error: 10.70447
- Mean of Response: 21.19966
- Observations (or Sum Wgts): 116

Analysis of Variance
- Source: DF Squares Mean Square F Ratio
 - Model: 1 3.051 3.051 0.0266
 - Error: 114 13098.755 114.586 Prob > F
 - C. Total: 115 13065.828

Parameter Estimates
- Term: Estimate Std Error t Ratio Prob>|t|
 - Intercept: 20.936154 1.841465 11.35 <0.001*
 - CD34 (% of viable CD45): 0.2952849 0.090474 3.28 0.0012

Linear Fit
Days to ANC 500 = 21.841496 - 0.0095764*CFU (Total Post Seg Thaw in 10^5)

Summary of Fit
- RSquare: 0.001787
- RSquare Adj: -0.00967
- Root Mean Square Error: 10.69165
- Mean of Response: 21.19966
- Observations (or Sum Wgts): 116

Analysis of Variance
- Source: DF Squares Mean Square F Ratio
 - Model: 1 23.347 23.347 0.2041
 - Error: 114 13042.241 114.408 Prob > F
 - C. Total: 115 13065.828

Parameter Estimates
- Term: Estimate Std Error t Ratio Prob>|t|
 - Intercept: 21.841496 1.730291 12.81 <0.001*
 - CFU (Total Post Seg Thaw in 10^5): -0.0095766 0.021199 -0.45 0.6523
CCBB Proposed Stability Plan

- Examine results post thaw from “duke to duke” units
- Supplement with lab thaws if 3 units per year of banking were not transplanted for any given year.

- Follow segment potency testing with a plan to augment the protocol with segment testing over time
 - More samples to study
 - Faster release criteria
Conclusions

- The ALDHbr content of segments attached to cryo-preserved cold blood units correlates with engraftment after UCBT.

- ALDHbr correlates with CFUs and the cells are metabolically active and viable.

- Further prospective studies to validate these findings must be performed.
Conclusions

- Loss of Stability for cryopreserved cord blood units has not yet been demonstrated.
- Expiry has not been established.
- Potency is a superior measure of the ability of a cord blood unit to rescue hematopoiesis.
- Potency is affected by factors not associated with time in storage.
- Potency should be utilized for CBU release, regardless of time in storage.
What is the ultimate benchmark: Engraftment in the patient or Technical results in the laboratory?
Spencer, Age 11
ALD
9 years post
UCBT

Maddy, Age 13
Hurler Syndrome
12 years post
UCBT

Madison, Age 7
Krabbe Disease
7 years post
UCBT
Acknowledgements

Kevin Shoulars, PhD
Kristin Page MD
Andrew Balber PhD
Tracy Gentry
Pamy Noldner

Stem Cell Laboratory
 Barb Waters-Pick
 Melissa Reese
 Sophia Avrutsky
Carolinas Cord Blood Bank
 Dondi Pulse-Earle
EMMES Corp
 Adam Mendizabal
 Shelly Carter, PhD
CIBMTR
 Brent Logan
NMDP
 Steven Spellman