A Case-Crossover Study of Heat Exposure and Injury Risk in Outdoor Agricultural Workers

June Spector
Departments of Environmental and Occupational Health Sciences (DEOHS) & Medicine
University of Washington (UW)
Seattle, Washington

With:
WA Dept of L&I, SHARP Program:
David Bonauto, Darrin Adams

UW DEOHS:
Richard Fenske, Lianne Sheppard, Tania Busch-Isaksen, Miriam Calkins

Funding Source: CDC/NIOSH 5K01OH010672-02
Disclosures: None
What’s the problem?

Heat-related illness fatality rate, 20x higher in crop production and support than all industries

1992-2006; US CDC/MMWR 2008
What’s the problem?

▲ Heat-related illness fatality rate, 20x higher in crop production and support than all industries

▲ Injury rate, WA State Fund workers’ comp claims for fruit/tree nut farming falls from elevation: 91/100,000 FTE

1992-2006; US CDC/MMWR 2008

2002-2010; Anderson et al 2013
What do we know?

↑ mean daytime apparent temp, max daily temp

↑ occupational injuries

Morabito 2006

Xiang 2014

Adam Poupart 2015
Potential mechanisms

Exercise-related ↓hydration, ↑core body temp

↓Vigilance, concentration, balance

↓ Falls

Ganio 2011; Armstrong 2012; Zemkova 2014
Relevance in Washington State

May-Sept 2000-2012
mean (range) max daily temp:
82 (46-107)°F

http://wak.infobaselearning.com/media/10635/Washingtonstate-agri-e.gif
Gaps we aimed to address

- Outdoor agricultural work
 - Tree fruit harvest

- Potential exposure misclassification
 - Modeled exposure data
What we did

- Study design: Case-crossover

- Study population: WA State Fund adult outdoor agriculture workers’ comp new traumatic injuries, 2000-2012
Modeled/gridded UW Climate Impacts Group meteorological data:
~4 x 7.5 km resolution

Maurer 2002; https://github.com/geocommons/geocoder/;
http://wak.infobaselearning.com/media/10635/Washingtonstate-agri-e.gif
Modeled/gridded UW Climate Impacts Group meteorological data:
~4 x 7.5 km resolution

Where & how we did it

Injury lat/long assigned

Joined to nearest daily max Humidex (~ air temperature, dew point) using Euclidean nearest neighbor approach

Maurer 2002; https://github.com/geocommons/geocoder/;
http://wak.infobaselearning.com/media/10635/Washingtonstate-agri-e.gif
What we compared

- Janes 2005; Occ Health Clinics for Ontario Workers 2012

- Injury day (Tu)
- Referent days (Tu)
- Referent window (calendar mo)
- Start of employment

A priori, max daily Humidex (H_{max})
- < 25
- 25-29
- 30-33
- ≥ 34

Conditional logistic regression

Janes 2005; Occ Health Clinics for Ontario Workers 2012
What we found

Selected injury claim characteristics (N=12,213)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>n(%) or median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years):</td>
<td></td>
</tr>
<tr>
<td>18-34</td>
<td>6,929 (57%)</td>
</tr>
<tr>
<td>35-44</td>
<td>2,762 (23%)</td>
</tr>
<tr>
<td>45-54</td>
<td>1,638 (13%)</td>
</tr>
<tr>
<td>Male gender</td>
<td>9,468 (78%)</td>
</tr>
<tr>
<td>Length of employment (days)</td>
<td>61 (7, 760)</td>
</tr>
</tbody>
</table>
What we found

Selected injury claim characteristics (N=12,213)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>n(%) or median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years):</td>
<td></td>
</tr>
<tr>
<td>18-34</td>
<td>6,929 (57%)</td>
</tr>
<tr>
<td>35-44</td>
<td>2,762 (23%)</td>
</tr>
<tr>
<td>45-54</td>
<td>1,638 (13%)</td>
</tr>
<tr>
<td>Male gender</td>
<td>9,468 (78%)</td>
</tr>
<tr>
<td>Length of employment (days)</td>
<td>61 (7, 760)</td>
</tr>
<tr>
<td>Body part:</td>
<td></td>
</tr>
<tr>
<td>Upper extremity</td>
<td>4,717 (39%)</td>
</tr>
<tr>
<td>Lower extremity</td>
<td>2,709 (22%)</td>
</tr>
<tr>
<td>Event/exposure:</td>
<td></td>
</tr>
<tr>
<td>Falls</td>
<td>5,893 (48%)</td>
</tr>
<tr>
<td>Bodily reaction/exertion</td>
<td>3,947 (32%)</td>
</tr>
</tbody>
</table>
Odds ratios & 95% confidence intervals of workers’ compensation injury*

*Adjusted for job tenure

Max daily Humidex
- (< 25)
- 25-29
- 30-33
- ≥ 34
Odds ratios & 95% confidence intervals of workers’ compensation injury*

*Adjusted for job tenure

Max daily Humidex
(< 25)
25-29
30-33
≥ 34

May-Sept (n=30,833)
Cherry harvest duties (Jun-Jul) (n=2,180)
Apple harvest duties (Aug-Oct) (n=4,033)
Excluding injury times before 12:30 pm (n=30,870)
What does it mean?

- ↑ risk WA agriculture workers’ compensation injuries in warm conditions, particularly when Humidex 30-33 (compared to <25)
What does it mean?

- ↑ risk WA agriculture workers’ compensation injuries in warm conditions, particularly when Humidex 30-33 (compared to <25)

- Particularly ↑ risk during cherry harvest duties, Jun-Jul
 - Early in season, warm
 - Workers more vulnerable?
“Reverse U-shaped” dose-response relationship

- Consistent with other studies
 - Better acclimatization when exposures higher?
 - Misclassification of exposures at higher exposures (work shifts end earlier)?

Xiang 2014.
What are the implications?

- High risk populations may benefit from combined injury and heat-related illness prevention efforts.

- The potential benefits of heat prevention interventions, including policies, should take into account reductions in morbidity, mortality, and costs associated with heat-related injuries in addition to other heat-related outcomes.
Climate change context: Risk of heat health effects may increase!

Increased frequency & severity of extreme heat events, increased temperatures

High risk industries include agriculture & construction