Economic Approach to Estimating the Value of Water

November 27, 2017

Grace M. Johns, PhD
Senior Associate and Economist
1. Water valuation methods
2. Application to four SW Florida utilities
3. Using estimated water values in decision making
1. Water Valuation Methods
Value of potable water definition

• Maximum willingness-to-pay (WTP) for water of specific:
 • Quantity – per day, per year
 • Reliability – restrictions, water pressure, boil water orders
 • Quality – safe potable water
• Marginal value - for an additional unit of water
• Total value - for all units of water purchased
• For individual, total value is sum of the marginal values in each use
Value of water depends on its use

- **Essential water uses**
 - Water used for drinking, cooking and sanitation
 - Tied to meeting basic human health needs and do not include water waste

- **Discretionary water uses**
 - Water uses for all other purposes such as lawn/landscape irrigation, car washing, and to fill pools and fountains
 - Uses that customer can manage relatively easily based on income, prices, and water shortage conditions
Water value depends on water use

Essential Uses – drinking, cooking, sanitation

Discretionary Uses
Methods to estimate water value

1. Statistical estimation using –
 a) Passively-generated customer data and perhaps data from nearby utilities
 b) Data collected from survey of water customers and other water users

2. Benefits-transfer using results of valuation studies of other utilities
Value influenced by price elasticity of water demand

- Measures extent to which customer will change amount of water purchased in response to a change in real water price, all else equal
- Defined by % change in amount of water purchased in response to a 1% change in water price
- Price elasticity of -0.4 means that a 10% increase in price results in a 4% reduction in amount of water purchased
Water demand is inelastic:
\[-1 < E_p(water) < 0\]

Elasticity values chosen to represent utility’s customers based on climate, weather and customer characteristics.

Price elasticity of demand estimates for benefits-transfer compiled: 144 residential; 17 commercial; 42 industrial.

Price elasticity of water demand estimates from literature

<table>
<thead>
<tr>
<th>Customer Sector</th>
<th>Range of Short Run Price Elasticity Values</th>
<th>Average of Midpoint of Water Demand Elasticities Estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>-0.10 to -0.70</td>
<td>-0.40 (a)</td>
</tr>
<tr>
<td>Commercial/Government</td>
<td>-0.10 to -0.25</td>
<td>-0.18 (midpoint)</td>
</tr>
</tbody>
</table>

(a) Average of 314 price elasticities of water demand from Dalhuisen et al. (2003)
Observable factors that determine amount of water used

- Water and Sewer Price
- Income / Profit
- Irrigation requirements (weather)
- Household size / no. of employees
- Water using technologies
- Type and amount of production
Q(i,t) = b0 + b1 x P(i,t) + b2 x F2(i,t) + … + bk x Fk(i,t) + e(i,t)

Where:
- Q(i,t) is water use by the ith customer during time t or billing period t;
- b0 is the constant of the estimated equation;
- P(i,t) is the water and sewer price;
- F2(i,t), …, Fk(i,t) are other factors that influence water use;
- b1, b2, … bk are the coefficients estimated by the regression; and,
- e(i,t) is the estimation error.
Water demand equation implies water value

Single Family Household Annual Water Demand Equation
(Price varies and all other factors are constant)

Value of Water = Consumer Surplus + Water (& Sewer) Bill
Water demand equation implies water value

Single Family Household Annual Water Demand Equation
(Price varies and all other factors are constant)

Value of Water = Consumer Surplus + Water (& Sewer) Bill

Only this part of demand curve can be estimated using passive data
2. Application to four SW Florida utilities
Benefit of additional water supply

- Avoidance of water shortages
- Utility and WMD reaction to water shortages
- Reduce discretionary water uses
 - Lawn watering restrictions
 - Other outdoor use restrictions
 - Stop water waste through conservation practices
- In practice, essential uses would be supplied
- Value of additional water supply is preservation of discretionary uses
- Discretionary uses have value to customers
Valuing water using benefits transfer

• Two pieces of information needed to “draw” demand curve:
 • Price elasticity of demand estimate from other water demand studies
 • A point on the demand curve – current price and quantity sold
• Values discretionary water uses only
• \(E_P = \text{Percent change in quantity of water demanded} \)
 \(= \text{Percent change in water and sewer price} \)
• Example: \(E_P = -0.40 \) means that a 10% increase in real price results in a 4% reduction in water sold to customers
Price Elasticity of Water Demand and Point on the Demand Curve

<table>
<thead>
<tr>
<th>Utility</th>
<th>Price Elasticity</th>
<th>Marginal Water and Sewer Price per TG</th>
<th>Monthly Household Water Use in TG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonita Springs</td>
<td>-0.40</td>
<td>$8.92</td>
<td>15.69</td>
</tr>
<tr>
<td>Collier County</td>
<td>-0.40</td>
<td>$9.88</td>
<td>12.09</td>
</tr>
<tr>
<td>Cape Coral</td>
<td>-0.40</td>
<td>$13.59</td>
<td>7.96</td>
</tr>
<tr>
<td>Lee County</td>
<td>-0.40</td>
<td>$9.94</td>
<td>7.63</td>
</tr>
</tbody>
</table>

Construct water demand equations of four Florida utilities
Bonita Springs Residential Water Values

Estimated demand equation:
Quantity = 22 – 0.70 x Price

Discretionary Water Use per Household:
Total Value = $183 / month or $2,200 / year or $17 / kgal
Value net of water and sewer bill = $64 / month or $763 / year or $6 / kgal

Water Quantity per Month (TG)*
*includes waste water rate of $3.70 per TG, does not include fixed changes
Estimated demand equation:
Quantity = 11 – 0.23 x Price

Discretionary Water Use per Household:
Total Value = $66 / month or $792 / year or $20 / kgal
Value net of water and sewer bill = $7 / month or $82 / year or $2 / kgal

Water Price ($ per TG)*

Water Quantity per Month (TG)*

* includes waste water rate of $9.04 per TG, does not include fixed changes

KEY
- Water bill associated with essential water use
- Water bill associated with discretionary water use
- Consumer surplus

Total Value of Discretionary Water Use = (Q, A, B, Q_i)
Collier County Residential Water Values

Estimated demand equation:
Quantity = 17 – 0.49 \times \text{Price}

Discretionary Water Use per Household:
Total Value = $128 / month or $1,500 / year or $17 / kgal
Value net of water and sewer bill = $32 / month or $384 / year or $4 / kgal

* includes waste water rate of $4.34 per TG, does not include fixed changes
Estimated demand equation:

\[\text{Quantity} = 11 - 0.31 \times \text{Price} \]

Discretionary Water Use per Household:

Total Value = $43 / month or $516 / year or $15 / kgal

Value net of water and sewer bill = $2.25 / month or $27 / year or $0.76 / kgal

Water Quantity per Month (TG)*

* includes waste water rate of $5.86 per TG, does not include fixed changes
Water Use and Discretionary Water Value of Four Selected Florida Utilities

<table>
<thead>
<tr>
<th>Row No.</th>
<th>Item</th>
<th>Bonita Springs</th>
<th>Collier County</th>
<th>Cape Coral</th>
<th>Lee County</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Average thousand gallons (TG) per household per month</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>Total water use</td>
<td>15.68</td>
<td>12.09</td>
<td>7.96</td>
<td>7.63</td>
</tr>
<tr>
<td>(3)</td>
<td>Essential water use</td>
<td>4.73</td>
<td>4.73</td>
<td>4.73</td>
<td>4.73</td>
</tr>
<tr>
<td>(4) = (2) - (3)</td>
<td>Discretionary water use</td>
<td>10.95</td>
<td>7.36</td>
<td>3.23</td>
<td>2.90</td>
</tr>
<tr>
<td>(5)</td>
<td>Discretionary water use - monthly $ values per household</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>Total value</td>
<td>$183</td>
<td>$128</td>
<td>$66</td>
<td>$43</td>
</tr>
<tr>
<td>(7)</td>
<td>Water and sewer bill</td>
<td>$119</td>
<td>$96</td>
<td>$59</td>
<td>$40</td>
</tr>
<tr>
<td>(8) = (6) - (7)</td>
<td>Net water value</td>
<td>$64</td>
<td>$32</td>
<td>$7</td>
<td>$3</td>
</tr>
<tr>
<td>(9)</td>
<td>Value of additional water supply using average discretionary water value $ per 1,000 gallons</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10) = (6) / (4)</td>
<td>Total value</td>
<td>$17</td>
<td>$17</td>
<td>$20</td>
<td>$15</td>
</tr>
<tr>
<td>(11) = (7) / (4)</td>
<td>Water and sewer bill</td>
<td>$11</td>
<td>$13</td>
<td>$18</td>
<td>$14</td>
</tr>
<tr>
<td>(12) = (8) / (4)</td>
<td>Net water value – Maximum increase in water supply cost that customers willing to pay</td>
<td>$6</td>
<td>$4</td>
<td>$2</td>
<td>$1</td>
</tr>
</tbody>
</table>
Water use values useful to utility decision making

<table>
<thead>
<tr>
<th>Item</th>
<th>Bonita Springs</th>
<th>Collier County</th>
<th>Cape Coral</th>
<th>Lee County</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total value</td>
<td>$17</td>
<td>$17</td>
<td>$20</td>
<td>$15</td>
</tr>
<tr>
<td>Water and sewer bill</td>
<td>$11</td>
<td>$13</td>
<td>$18</td>
<td>$14</td>
</tr>
<tr>
<td>Net water value</td>
<td>$6</td>
<td>$4</td>
<td>$2</td>
<td>$1</td>
</tr>
</tbody>
</table>

Total value: Residential customers in Bonita Springs are willing to pay up to $17 per 1,000 gallons of water for discretionary uses.

Net water value: Water supply projects that do not increase the cost of water by more than $6 per 1,000 gallons and that continue to supply discretionary uses would be supported by the public.

Note: This is discretionary water use ONLY. The value of essential water use is much higher than reported in this table.
3. Using estimated water values in decision making
Estimated Annual Benefits and Costs of Proposed Four Corners Reservoir, 2017 $

<table>
<thead>
<tr>
<th>Item</th>
<th>Alternative A</th>
<th>Alternative B</th>
<th>Alternative C</th>
<th>Alternative D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative Description</td>
<td>Shallow Above-Ground Reservoir</td>
<td>Deep Above-Ground Reservoir</td>
<td>Deep Below Ground Reservoir</td>
<td>Deep Below- and Above Ground Reservoir</td>
</tr>
<tr>
<td>Net Storage Volume ac. Ft.</td>
<td>1,120</td>
<td>5,510</td>
<td>6,816</td>
<td>11,979</td>
</tr>
<tr>
<td>Water Supply in mgd</td>
<td>0.0</td>
<td>2.6</td>
<td>5.5</td>
<td>10.0</td>
</tr>
<tr>
<td>Value of Annual Benefits, estimated:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Supply to Utilities</td>
<td>$0</td>
<td>$3,091,000</td>
<td>$6,539,000</td>
<td>$11,890,000</td>
</tr>
<tr>
<td>TP Reduction to Estuaries</td>
<td>$90,000</td>
<td>$192,000</td>
<td>$382,000</td>
<td>$563,000</td>
</tr>
<tr>
<td>Reduced Discharge to Estuaries</td>
<td>$3,360,000</td>
<td>$6,537,000</td>
<td>$7,320,000</td>
<td>$9,610,000</td>
</tr>
<tr>
<td>Total Value of Benefits</td>
<td>$3,450,000</td>
<td>$9,820,000</td>
<td>$14,241,000</td>
<td>$22,063,000</td>
</tr>
<tr>
<td>Total Annualized Capital, Admin, R&R and O&M Cost</td>
<td>$2,285,000</td>
<td>$4,333,000</td>
<td>$3,810,000</td>
<td>$5,430,000</td>
</tr>
<tr>
<td>Annual Net Benefits (B – C)</td>
<td>$1,165,000</td>
<td>$5,487,000</td>
<td>$10,431,000</td>
<td>$16,633,000</td>
</tr>
<tr>
<td>Project Economically Feasible?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>