Malignant Hyperthermia: Managing and Understanding Acute Episodes

Jordan Rae Burt, Pharm. D.
Mayo Clinic Florida PGY-1 Resident 2014
burt.jordan@mayo.edu

Objectives
• 1. Define malignant hyperthermia (MH)
• 2. Identify recommended MH treatment strategy
• 3. Summarize the role of a pharmacist in MH treatment
• 4. Memorize MH hotline phone number

Definition
• Rare but lethal pharmacogenetic condition triggered by volatile anesthetics and succinylcholine that results in a hypermetabolic state.
• Results in hypercarbia, hyperkalemia, and myoglobinuria that leads vital organ damage.
• Terminology = Malignant Hyperthermia Susceptible

Incidence and Mortality
• Occurs approximately in 1 in 5,000 – 10,000 children and 1 in 50,000 adult anesthesias
 – Historical mortality rate: 80%
 – Current mortality rate: < 10%
• Approach every patient as possibly being MHS.

Physiology of Muscle
Mitigating Components

- **Triggering Agents**
 - Inhalation anesthetics
 - Halothane, isoflurane, enflurane, sevoflurane, desflurane
 - Succinylcholine
 - Temperature
 - Stress

- **Genetic Factors**
 - De novo
 - Autosomal dominant inheritance
 - Results in 50% chance of passing it to offspring
 - Mutation Factors:
 - Mutations encoding the genes for RYR1 or DHP receptors

Testing Methods

- **In vitro contracture test (IVCT)**
 - Caffeine Halothane Contracture Test (CHCT)

- **Genetic Testing**
 - Alternative method

Presentation of Early Signs/Symptoms

- Onset of Presentation:
 - Anytime during anesthesia and post-operatively
 - Fulminant or indolent
 - Muscle Rigidity
 - Masseter muscle rigidity
 - Generalized rigidity
 - Hypercarbia
 - Rise in end-expired carbon dioxide concentration
 - Sinus Tachycardia
 - Tachypnea and Cyanosis

Presentation of Late Signs/Symptoms

- Fever and Sweating
 - Temperatures can be up to 113°F
- Myoglobinuria and cola colored urine
- Hyperkalemia
 - Cardiac Arrhythmias (V-tach or V-fib)
- Mixed respiratory and metabolic acidosis
- Excessive Bleeding

Laboratory Values

<table>
<thead>
<tr>
<th>Lab Parameter</th>
<th>Lab Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABG</td>
<td>pH < 7.26</td>
</tr>
<tr>
<td>PaCO₂</td>
<td>> 60 mmHg</td>
</tr>
<tr>
<td>PaO₂</td>
<td>> 55 mmHg</td>
</tr>
<tr>
<td>H⁺</td>
<td>> 8 nEq/L</td>
</tr>
<tr>
<td>Creatinine Kinase</td>
<td>> 1,000, if inhaled anesthetic</td>
</tr>
<tr>
<td>Serum Myoglobin</td>
<td>> 170 mg/dL</td>
</tr>
<tr>
<td>Urine Myoglobin</td>
<td>> 200 mg/dL</td>
</tr>
</tbody>
</table>

Differential Diagnosis

- **Primary**
 - Hyperkalemic cardiac arrest in muscular dystrophy patients
 - Poor ventilation
 - Rhabdomyolysis
 - Neuromalignant Syndrome
 - Exact same presentation
 - rigidity, hyperthermia, acidosis, rhabdomyolysis
 - Drugs of abuse
- **Secondary**
 - Sepsis
 - Thyroid Storm
 - Pheochromocytoma
 - Iatrogenic overheating
 - Transfusion reaction from blood product
Therapy Goals

- Treatment must be emergent.
 - Administer once a diagnosis of MH is reasonable.

- Goals:
 - 1. Hyperventilate/Manage Hypercarbia
 - 2. Administer Dantrolene
 - 3. Treat Hyperkalemia
 - 4. Cooling to core temperature of 38° C

Acute MH Crisis Management

- 1. Stop the trigger agent
- 2. Purge the anesthesia machine with 100% O₂ at high rates
- 3. Alert the team and others to help
- 4. Administer dantrolene
- 5. Place activated charcoal in inspiratory and expiratory ports of machine
- 6. Place a foley and gain additional access
- 7. Cool the patient to 38° C

MH Cart Content

- Dantrolene
 - 36 vials
- Sterile Water
 - Room temperature or 35-40 °C
 - Vials v. bags debate
- Bicarbonate 8.4 %
- Dextrose 50 %
- Calcium Chloride 10 %
- Regular Insulin
- Lidocaine 2 % or Amiodarone
- Refrigerated saline

Goal 1 : Managing Hypercarbia

- Hypercarbia concerns:
 - Increase minute ventilation or increase tidal volume
 - Look for obstruction

 If this doesn’t solve the issue, then we have greatly increased or suspicion of MH and should initiate the treatment protocol.

Goal 2 : Initiate Dantrolene

- Hydantoin derivative developed as a muscle relaxant in 1973
 - Mechanism of action:
 - binds to the ryanodine receptor to deter the release of calcium from the sarcoplasmic reticulum.
 - Utilization of dantrolene in malignant hyperthermia discovered in 1975
 - Dr. Keith Ellis teamed with South African anesthesiologist Gaisford Harrison
 - Only available in PO formulation
 - IV formulation approved in 1979

Dantrolene Monograph

- Indications:
 - Malignant Hyperthermia
 - Chronic Spasticity
 - Tetanus*
 - Neuroleptic malignant syndrome*
 - Rhabdomyolysis*
 - MDMA toxicity*
 - Pharmacokinetics:
 - T_{max} IV: 1 minute
 - Storage:
 - Room temperature
 - Accessible from any GA area within 10 minutes
- ADRs:
 - Nausea
 - Diarrhea
 - Fatigue/Malaise
 - Flushing
 - Lightheadedness
 - Muscle weakness...
 - Respiratory muscle weakness...
- Blackbox warnings:
 - Hepatotoxicity
Dantrolene Products

- **Dantrium IV Rapid Mixing Powder for solution**
 - Lyophilized powder 20 mg vial with 3 g of mannitol
 - Sodium hydroxide \(\sim pH = 9.5 \)
 - DSM Pharmaceuticals
 - Cost: $65 / vial
- **Revonto IV Powder**
 - Lyophilized powder 20 mg vial with 3 g of mannitol
 - Sodium hydroxide \(\sim pH = 9.5 \)
 - JHP Pharmaceuticals
 - Cost: $92 / vial
- **Dantrium and generic oral capsule**

Dantrolene Administration

- **Dosing:**
 - LD: 2.5 mg/kg IV Push
 - Bolus doses: 1 mg/kg IV Push until symptoms subside
 - Max: 10 mg/kg IV Push
 - May require up to 30 mg/kg IV Push
 - Additional post-op doses required
- **Administration:**
 - Dissolve each with 60 mL of sterile water PF
 - Large bore IV line in largest central or peripheral line available

Supply Requirements

<table>
<thead>
<tr>
<th>Patient Weight</th>
<th>Dantrium Vials</th>
<th>Sterile H2O (mL)</th>
<th>Dantrolene Vials</th>
<th>Sterile H2O (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg</td>
<td>lb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>110</td>
<td>62.5</td>
<td>575</td>
<td>0.5</td>
</tr>
<tr>
<td>70</td>
<td>154</td>
<td>8.75</td>
<td>825</td>
<td>0.7</td>
</tr>
<tr>
<td>80</td>
<td>181</td>
<td>11.25</td>
<td>925</td>
<td>0.9</td>
</tr>
<tr>
<td>110</td>
<td>242</td>
<td>13.75</td>
<td>1255</td>
<td>1.1</td>
</tr>
<tr>
<td>130</td>
<td>286</td>
<td>16.25</td>
<td>1575</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Goal 3: Treatment of Hyperkalemia

- Insulin + Glucose
 - 10 units IV and 60 mL of 10% dextrose
 - 0.1 units/kg IV and 0.8 mg/kg dextrose
 - Treat if K+ > 6.5 or ECG changes
- Calcium
 - Calcium chloride 10 mg/kg
 - Calcium carbonate 30 mg/kg
- Sodium bicarbonate 1-3 mEq/kg/dose
 - 10 mEq for base deficits > 8
- Furosamide 0.5-1 mg/kg IV once

- Consider atropine, lidocaine, diahydral or ECMO
- \(\text{Ca}^{2+} \) Calcium Channel Blockers

Goal 4: Supportive Care

- Hydration to protect the kidneys
- Cool to core temp
 - Infuse cooled saline
 - Lavage open body cavities
 - Nasogastric lavage
 - Ice the surface
 - Goal Core Temperature: < 38.5°C (101.3°F)
- Bladder catheterization
 - Monitor hemoglobin for myoglobinuria
 - Continue monitoring twice daily trends downward
Post-Op Management

- Continue dantrolene
 - Bolus dose: 1 mg/kg IV Q4-6H for 24 – 48H
 - Continuous infusion: 0.1 – 0.3 mg/kg/hr
 - Continue treatment of any symptoms or components of MH
- Transfer to ICU
 - Ventilation care
 - Hemodynamic monitoring for at lest 24 hours
 - Monitor for recrudescence
 - Monitor vitals and respiration continuously for 24 hours

Future General Anesthesia

- Utilize non-triggering anesthetics or local anesthetics
 - Local:
 - Spinal, epidural, and nerve block agents
 - Lidocaine, ropivacaine, bupivacaine, etc.
 - Alternative agents:
 - Nitrous oxide, pentobarbital, thiotetanal, propofol, diazepam, atropine, ketamine, propofol, cisatracurium
- If intubation is required:
 - Machine MUST be purged
 - Change circuits
 - Flush the machine at 10 L/min for 20 min
 - Constant temperature and capnography monitoring

Components of Success

- 1. Education
- 2. Kit Preparation
- 3. MHAUS Based Protocol
- 4. Periodic Drills
- Call the MH HOTLINE
 1-800-644-9737

References

14. SUNY Department of Anesthesiology. Anesthesiology knowledge – Malignant Hyperthermia. SUNY downstate website.