Canal segment length of custom earplugs: Effects on attenuation (and comfort)

Jennifer Tufts and Siyuan Chen
University of Connecticut
Storrs, CT
Lynne Marshall
Naval Submarine Medical Research Laboratory
Groton, CT
ACKNOWLEDGMENT

This study was funded by the Office of Naval Research.
Can you get TOO MUCH attenuation from an HPD?

- Of course, the answer is YES...
- But the answer could change, depending on the environment...
• **Very high attenuation is desirable** in some extreme occupational or operational environments
 • Aircraft carrier flight deck: ~130-150 dBA
 • Aircraft cockpit: ~110-130 dBA

• **Sufficient attenuation is not easily obtainable** in these environments
 • Factors related to HPD design and/or manufacture
 • Factors related to the wearer
Custom-molded earplugs (CMEPs)

http://www.westone.com/hhc/index.php/about/military

- Critical factors for achieving high attenuation:
 - Airtight seal in the ear canal (e.g., Pirzanski et al., 2000)
 - Longer canal segment (e.g., Du et al., 2008)
Attenuation in CMEPs

- Norris et al. (2011): attenuation increased with CMEP canal segment length up to a length of 15 mm (which is past the 2nd bend)
 - Anatomically correct test fixture
 - Set of CMEPs

- Berger (1983): attenuation increased with foam plug insertion depth at frequencies ≤ 1000 Hz
Attenuation in CMEPs

- Canal segment lengths that extend past the 2nd bend may cause discomfort for some people (Pirzanski, 1997)

http://store.treoo.com/main/services/ear-impressions.html
In extreme environments, the goal is to achieve maximum attenuation while maintaining wearability

• What we know:
 • Longer canal segment length increases attenuation, but may decrease comfort

• What we don’t know:
 • The forms of the functions relating attenuation and comfort to canal segment length
 • The variability of these functions across individuals
In the current study...

- We mapped the form of the function relating attenuation to CMEP canal segment length in four individuals
 - Within-subjects design
- We obtained anecdotal reports of comfort
Participants

- Two men, two women
 - Mean age = 24.8 yr; SD = 0.5
 - Audiometrically and otologically normal
Custom earplugs

- Manufactured by Westone Laboratories, Inc.
- Solid silicone
- Canal segment extended past second bend
Earplug attenuation measurement

- Monaural sound-field hearing thresholds measured for 1/3-octave noise bands
 - Center frequencies: 125 - 6300 Hz
 - Test ear alternately occluded and unoccluded
 - Non-test ear occluded with a foam plug + earmuff
- Attenuation (in dB) =
 \((\text{occluded threshold}) - (\text{unoccluded threshold})\)
Procedures

- Each subject visited the lab seven times
- At each visit...
 - Attenuation measured for 4 fittings of the CMEP
 - Subject was asked if CMEP was comfortable
 - Canal segment of CMEP shortened by 2 mm
Earplug modification

Buffalo V35 Handpiece System with a blue grinding stone.
RESULTS (Averaged data)
Attenuation decreased as CMEP canal segment length was shortened.

The effect was greater for low-mid frequencies (\(\leq 1000 \text{ Hz} \)) than higher frequencies (\(> 2000 \text{ Hz} \)):
- Median decrease in lows = 25 dB
- Median decrease in highs = 10 dB
Effect of canal segment length

Real-Ear Attenuation (dB)

Frequency (Hz)

10-12 mm removed 6-8 mm removed 2-4 mm removed Full length
Effect of canal segment length/insertion depth

- 0% insertion: 10-12 mm removed
- 15-20% insertion: 6-8 mm removed
- 30-60% insertion: 2-4 mm removed
- 80-100% insertion: Full length

Solid = foam plug, Berger (1983)
Dashed = custom plug, Tufts (2014)
RESULTS (Individual data)
• Decrease in attenuation was not linear

• Some regions in the ear canal were more critical for maintaining attenuation than others
Subject 1 (Male)

Personal Attenuation Rating as a function of canal length

Canal segment length (mm)

PAR (dB)

Visit 1 2 3 4 5 6 7

Transverse view of earplug
Subject 1 (Male)

- **Frequency (Hz)**: 125, 250, 500, 1000, 2000, 3150, 4000, 6300
- **Attenuation (dB)**: 0, 10, 20, 30, 40, 50, 60

- Thicknesses: 17 mm, 15 mm, 13 mm, 11 mm, 9 mm, 7 mm, 5 mm

Graph shows attenuation levels across different frequencies for various thicknesses.
Subject 2 (Female)

Personal Attenuation Rating as a function of canal length

Visits 1234567

Canal segment length (mm)

PAR (dB)

Transverse view of earplug
Subject 2 (Female)

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>3150</th>
<th>4000</th>
<th>6300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attenuation (dB)</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

- 15 mm
- 13 mm
- 11 mm
- 9 mm
- 7 mm
- 5 mm
- 3 mm

Frequency (Hz) vs. Attenuation (dB)
Subject 3 (Male)

Personal Attenuation Rating as a function of canal length

Visit 1 2 3 4 5 6 7

Canal segment length (mm)
Subject 4 (Female)

Personal Attenuation Rating as a function of canal length

Transverse view of earplug
Subject 4 (Female)

Frequency (Hz)

125 250 500 1000 2000 3150 4000 6300

Attenuation (dB)

0 10 20 30 40 50 60

18 mm
16 mm
14 mm
12 mm
10 mm
8 mm
6 mm

Frequency (Hz)

125 250 500 1000 2000 3150 4000 6300

Attenuation (dB)
DISCUSSION
Discussion

- Location of critical regions:
 - Between 1st and 2nd bends
 - At or near 2nd bend

- Comfort was achieved without removing critical regions

- However, for the two females, some attenuation had to be sacrificed to achieve comfort
Discussion

- Accounting for individual variation in location of critical regions and in comfort
 - Did snugness of fit vary along the canal segment length?
 - Would an acclimation period have changed comfort judgments?
DIRECTIONS FOR FUTURE STUDY
Modeling the effects of canal segment length on attenuation

- Control/characterize variability
 - Control snugness of fit along length of canal segment
 - Characterize ear canal size and geometry
 - E.g., Abel et al. (1990)
 - Measure comfort more formally (including an appropriate acclimation period)
 - E.g., Byrne et al. (2011), Davis (2008)
THANK YOU FOR YOUR ATTENTION

jennifer.tufts@uconn.edu