Complex Regional Pain Syndrome

Paul J. Christo, MD, MBA
Associate Professor
Director, Multidisciplinary Pain Fellowship (2003-2011)
Director, Blaustein Pain Treatment Center (2003-2008)
Division of Pain Medicine
Department of Anesthesiology and Critical Care Medicine
Johns Hopkins Medicine

Academy of Integrative Pain Management
2017

Disclosures

• Consultant/Advisory Board: GlaxoSmithKline Consumer Healthcare

• Media Work: Algiatry, LLC

• This presentation may contain references to off-label or investigational use of drugs or products

Objectives

• Identify the current diagnostic criteria for CRPS

• Recognize the hallmark of the diagnosis

• Review the current treatments and their evidence
Complex Regional Pain Syndrome Type I

What Is Complex Regional Pain Syndrome (CRPS/RSD)?

- Debilitating chronic pain syndrome characterized by
 - Pain and hypersensitivity
 - Vasomotor skin changes
 - Functional impairment
 - Various degrees of trophic change
- Generally follows musculoskeletal trauma
- Occurs more frequently in young adults and women
- Triggered by trauma (fractures), surgery, inflammation, stroke, crush injury, MI, neoplasms, immobilization, sprains.
- Psychological stressors and poor coping skills can influence natural history and severity of CRPS.
- At least 50,000 new cases of CRPS I occur annually in U.S.

Diagnostic Criteria for CRPS
Budapest Criteria

- Diagnosis of exclusion
- Continuing pain disproportionate to any inciting event
- Patients should report at least one symptom in 3 of the 4 categories and display one sign in 2 or more categories:
 - Sensory: report hypersensitivity or increased sensitivity to a sensory stimulation; evidence of hyperalgesia or allodynia
 - Vasomotor: temperature asymmetry or skin color changes
 - Sudomotor/edema: changes in sweating or edema
 - Motor/trophic: decreased range of motion or weakness, tremor, dystonia or trophic changes (hair, nail, skin changes)
- Designed to retain diagnostic sensitivity of original criteria while doubling specificity (reduce false positives)
- Validity supported; official IASP diagnostic criteria in 2012
Clinical Features of CRPS

- **Systems**: autonomic, sensory, motor changes
- **Symptoms**: stinging, burning pain, aching, shooting, squeezing, throbbing sensations
- **Type I**: lacks specific nerve lesion;
- **Type II** (Causalgia) reflects clear evidence of nerve injury, but symptoms extend beyond the course of the affected peripheral nerve distinguishing it from isolated mononeuropathy
- **Stage I**: early, acute with sensory/vasomotor, autonomic changes
- **Stage II**: increased pain, vasomotor changes, substantial motor/trophic changes
- **Stage III**: diminished pain, sig. increased motor/trophic changes and continued vasomotor changes. No definite sequence occurs in all patients

- More common: transition from warm, red CRPS to cold, bluish common as CRPS progresses from acute to chronic state
- Warm and Cold CRPS: More likely to resolve within 12 months if initially diagnosed with warm CRPS.

Clinical Features of CRPS

- **Hyperesthesia**: increased sensitivity to stimulation
 - **Allodynia**: pain associated with stimulus that normally provokes no pain
 - **Hyperalgesia**: exaggerated painful response to a painful stimulus
- **Limb Disuse**: Animal and human studies report disuse in development of CRPS. Early mobilization important after injury to prevent chronic CRPS.
- **Natural Course**: Many cases probably resolve with limited intervention. Smaller subset of persistent pts seen in tertiary care clinics.

Clinical Features of CRPS

- **Sympathetic Component**: Sympathetic blockade can help distinguish presence
 - SMP = pain maintained by sympathetic efferent system or circulating catecholamines
 - SMP conditions = HZ, CRPS, Phantom pain, neuralgias
 - Sympatho-afferent coupling can trigger pain & play role in severity of syndrome
- **Psychological Component**: Depression common (24% - 49% of pts); higher risk of suicide
 - Anxiety, depression, anger may have greater pain impact due to sympatho-afferent coupling
Clinical Features of CRPS

- **Spread Patterns** (not universal; 48% report spreading)
 - Contiguous Spread = enlargement of the affected area (common)
 - Independent spread = location distant and non-contiguous with the initial site (less common)
 - Mirror-image spread = symptoms opposite the area of initial presentation (uncommon)
 - But, mirror image spread is most common according to Van Rijn et al, then contiguous spread

CRPS Type I

Evaluation of CRPS

- **Hallmark of diagnosis**
 - Thorough clinical evaluation of symptoms and signs

- **Laboratory testing**
 - Vascular studies = R/O DVT
 - EMG/NCT = R/O peripheral neuropathy
 - MRI and x-ray = R/O soft tissue, disc, central canal stenosis, neuroforaminal stenosis, bone disease
 - Blood testing = R/O infection, cellulitis, rheumatologic diseases
Evaluation of CRPS, cont’d

- Other Testing – may support clinical diagnosis
- Thermography, Three-phase bone scan, Sudomotor testing, Sympathetic blockade
- Outcome studies fail to support value lab of tests

Pathophysiology – Proposed Model

- Tissue injury elicits cytokines and neuropeptides (TNF-alpha, IL-1b, IL-2, substance P, B cell activation
 - High levels of osteoprotegerin may determine progression to CRPS or if injury resolves normally
- Neural injury may trigger CRPS as well
- Genetic factors may include polymorphisms of Alpha 1a adrenoceptors and the HLA system
- Nerve trauma may cause reduced density of nociceptive fibers causing alteration of sweat glands/hair follicles
- Nociceptive fibers now express adrenergic receptors; SNS and catecholamines can trigger nociceptive firing (sympatho-afferent coupling)
- Decreased SNS outflow after initiating trauma causes vasodilatation

Pathophysiology

- Decreased SNS outflow causes upregulation of local adrenergic receptors leading to vasoconstriction in presence of catecholamines
- Regional blood flow reductions cause local hypoxia leading to trophic changes
- Ongoing nociceptive input produces central sensitization (spinal cord)
- Altered afferent input from affected extremity contributes to reduced somatosensory representation in the brain
 - Impaired tactile sensation (↑ pain intensity & hyperalgesia)
- Result: CRPS reflects a disease of the CNS as well as SNS
 - Evidence of changes in somatosensory systems’ processing tactile, thermal, noxious stimuli

Pathophysiology

• Possible mechanisms involved in complex regional pain syndrome
 • Nerve injury
 • Ischemic reperfusion injury or oxidative stress
 • Central sensitization
 • Peripheral sensitization
 • Altered sympathetic nervous system function or sympatho-afferent coupling
 • Inflammatory and immune related factors
 • Brain changes
 • Genetic factors
 • Psychological factors and disuse

Fig. 1. Speculative model of interacting complex regional pain syndrome mechanisms. CGRP = calcitonin gene-related peptide; IL = interleukin; TNF = tumor necrosis factor.

• Brain Changes
 • Endogenous pain inhibitory pathways impaired (opioid mediated)
 • Reduced representation of affected limb in primary/secondary somatosensory cortices
 • Why? Increase somatosensory representation of unaffected limb
 • Motor changes too – disinhibition of primary motor cortex
 • Structural changes – reduced gray matter in insula and cingulate cortex (affective pain component)
 • Successful treatment can normalize altered somatosensory representation

• Autoantibodies
 • Serum studies of CRPS pts show autoantibodies against autonomic structures (Beta 2 adrenergic; muscarinic type 2 receptors)
 • CRPS may have autoimmune pathology in subset of pts
Onset

- Symptoms should occur within first few weeks of initiating event, based on mechanisms
- Data suggest development during 3 - 4 month window after initiating injury
 - Onset after this period unlikely and hard to explain mechanistically
- Studies suggest more severe pain early after initiating event & longer CRPS-like presentation, more likely to be CRPS versus delayed normal healing

Risk Factors

- Possible links between asthma, migraine, osteoporosis and later development of CRPS
- Significant association between concurrent use of ACE inhibitors and CRPS risk
- Females 3 X more likely affected

Treatment

- Multidisciplinary
 - Physical and Occupational Therapy
 - Medical
 - Psychological
 - Interventional
- General conclusion from recent reviews
 - Little support from high quality RCTs for many treatment approaches
 - Both reviews suggest efficacy for physical and occupational therapy, bisphosphonates, subanesthetic ketamine
 - Agreement that sympathetic blocks probably less effective
Treatment

- **Multimodal Approach:** early, aggressive
 - Goals: Normalize use of affected limb and prevent disuse
 - Incorporate motor therapy and graded motor imagery
- **Modalities**
 - Pharmacotherapy
 - TCAs, Anticonvulsants, Corticosteroids, Opioids, Tramadol, Bisphosphonates, Sympatholytic agents, Calcitonin, Ketamine
 - Sympathetic Nerve Blocks: Stellate Ganglion and Lumbar Sympathetic
 - Neuromodulation
 - Intrathecal Baclofen for Dystonia
 - Behavioral Approaches
 - Surgical Sympathectomy

Treatment

- **Physical and occupational therapy**
 - Scrubbing, stress loading, desensitization, myofascial release, isometric strengthening
 - Steroids
 - Pulse of oral steroids in acute stage may improve symptoms
 - 30-40 mg prednisolone x 2 weeks and taper
 - Gabapentinoids
 - Gabapentin – mild analgesia, but sign. reduction in sensory deficits
 - Antidepressants
 - Meta analyses support TCAs for non CRPS neuropathic pain
 - Transdermal Lidocaine
 - No RCTs
 - Opioids
 - Only to facilitate functional therapies and daily activities

Treatment

- **Psychological Treatment**
 - Pain focused CBT typically beneficial for chronic CRPS
 - Sympathetic Blockade
 - Stellate ganglion blocks/lumbar sympathetic blocks may assist in functional therapies for those with sympathetically maintained pain
 - Not curative
 - Spinal Cord Stimulation
 - Beneficial, but efficacy can diminish over time (3-5 years)
 - Ketamine (NMDA antagonist, IL-6 & TNF-alpha): affects central sensitization (hyperalgesia, allodynia) and cytokine release (immunomodulator)
 - Topical ketamine and subanesthetic infusions may hold promise for refractory CRPS; weaker support for anesthetic doses (ketamine coma).
 - Hepatic injury possible with repeat infusions
Treatment

- **Bisphosphonates**
 - Agents show promise in small RCTs; inhibit osteoclastic bone resorption
 - Rationale: Impaired bone metabolism may occur in CRPS
 - Most benefit if days duration <12 months

- **Antioxidants**
 - Dimethyl sulfoxide – warm CRPS
 - Oral N-acetylcysteine – cold CRPS
 - Significant relief typically for 17-52 weeks

- **Calcitonin**
 - Agents show promise in small RCTs
 - Inhibits osteoclasts and has independent antinociceptive effect
 - Most benefit if days duration >12 months

- **Intrathecal therapies (pain pumps)**
 - Baclofen – benefit in reducing dystonia and pain

Rehabilitation

- **Desensitization of the affected region**

- **Mobilization, edema control, and isometric strengthening**

- **Stress loading, isotonic strengthening, range of motion, postural normalization and aerobic conditioning**

- **Vocational and functional rehabilitation**

Novel Therapies

- **Mirror Box Therapy**
 - First described for treatment of phantom limb pain
 - Moving unaffected limb in front of mirror causes cortical reorganization of the sensory homunculus
 - Included in functional therapy programs

- **IV Immunoglobulin**
 - Interferes with autoantibodies and down regulates proinflammatory cytokines
 - Small RCT found efficacy

- **Lose dose naltrexone**
 - RCT ongoing; may reduce glial inflammation
Novel Therapies

- **Cannabinoids**
 - Emerging support in peripheral and central neuropathic pain conditions

- **Botulinum Toxin**
 - Reports and observations show improvement in dystonia, pain, allodynia after S/Q or IM injection

Novel Therapies

- **Scrambler Therapy**
 - FDA cleared in 2014 for neuropathic and cancer pain
 - Used in Europe for chemotherapy-induced peripheral neuropathy (CIPN)
 - Studies on CRPS, Failed Back Surgery Syndrome, Postherpetic Neuralgia, CIPN
 - Many patients had dramatic relief without side effects
 - Mechanism – transmits 16 sequences of low frequency electrical stimulation; inhibits pain impulse transmission
 - 30-45 minute sessions
 - Relief for weeks to months

Prevention

- **Primary**
 - Vitamin C (reduces inflammation via antioxidant effect)
 - Meta analysis showed substantial reduction in risk of CRPS after limb fracture or surgery (wrist fractures mainly)
 - 500 mg/day for at least 45 days from injury
 - Recent RCT = VI C associated with increase incidence of CRPS at 8 weeks after fracture
 - Conclusion: Use unclear
 - Minimize tourniquet duration & ischemic reperfusion injury

- **Secondary (prevent relapse)**
 - Postpone surgery until signs are minimal
 - Use regional anesthetic techniques (spinal/bilateral plexus block)
 - Salmon calcitonin of 100 IU daily s.c. perioperatively for 4 weeks