THE PAIN GAME
EXPLORING OCULAR PAIN AND INFLAMMATION

Derek N. Cunningham, OD, FAAO
Dr. Cunningham has received honoraria or research funding from
Abbott, Alcon, Allergan, Arctic Ox, Bausch and Lomb, BioTissue,
Nicox, Science Based Health, Tearlab, and TearScience

Recent Optometric Legislation

- April 2013 - Florida
 - Rx oral drugs
 - Comanagement
 - Minor procedures
- May 2013 - Georgia
 - Oral steroids
 - Hydrocodone
 - Use appropriate drug distribution modalities
- April 2014 - Tennessee
 - Injectable anesthetics
- Hydrocodone Update

I Think There is Something in My Eye

Photo Courtesy of Tom Joly, MD, PhD
Basics

- Anatomy
- Ocular Anatomy
- Clinical Manifestations
- Treatment
- Control
- Cause---------> Effect

Anatomy of Pain

- COX enzymes play a key role in inflammation and pain.
 - COX-1 is involved in maintenance of GI mucosa
 - COX-enzyme signals pain and inflammation

The Inflammatory Cascade

- Mast Cell
- Membrane Stabilization
- Tryptase
- Heparin
- Chymase
- Membrane Phospholipid
- Phospholipase A2
- Arachidonic Acid
- Cyclooxygenase
- Cysteine-related molecules
- Prostaglandins
- Thromboxane A2 (TXA2)
- Leukotrienes (LTB4, LTD4, LTE4, LTA4)
- Lipooxygenase
- Hydroperoxides

Pain - One in a Million

- Pain receptors are specific to location and stimuli
 - Sharp immediate pain: A-delta fibers
 - Prolonged unpleasant burning pain: mediated by smaller unmyelinated C fibers
- These lay dormant until stimulated and are often sensitized by inflammation

Nociceptors

- In all peripheral tissue
- Distribution will vary
- Stimulated by:
 - Heat
 - Energy
 - Trauma
 - Emotion?
 - Chemicals
 - Bradykinins
 - Serotonins
 - Histamines
 - GABA
 - Capsaicin
 - Prostaglandins

Modern Pain Perspective

- When a nerve cell communicates with another it uses just a millionth of the energy that a digital computer expends to perform an equivalent operation.
- Reliability - a signal travelling from one cortical cell to another typically has only a 20 percent possibility of arriving at its ultimate destination
Pain - Remember ME

- Various stimuli may signal a specific pattern of neuronal response based on a learned response
 - Think “suspicious coincidences” (Horace Barlow) as seen in the visual cortex

Common Painful Ocular Conditions

- Allergic conjunctivitis
- Angle closure glaucoma
- Conjunctivochalasis
- CL Related Pain
- Dacryoanexitis
- Dacryocystitis
- Dry eye disease
- EKC
- Episcleritis
- Foreign bodies
- Headache
- Hordeolum
- Optic neuritis
- Orbital cellulitis
- Preseptal cellulitis
- Pterygium
- Refractive Surgery
- Scleritis
- Trauma
- Uveitis

Importance of History

- History
 - Medical
 - Family
 - Social
 - Any drug allergies
- DOFDAR
 - Tell me about your pain
 - Quality
 - Duration
 - Frequency
 - Reproducible factors
 - Associated features
Eyelids and Pain

- Typically inflammation induced
- Many capsaicin receptors

Eyelids

- Pain is often inflammation and swelling based
- Decrease swelling = decrease pain
 - Cold compress
 - Medrol Dosepak
 - Lotemax ung
Corneal Pain Anatomy

- Most richly innervated structure in the body
 - Densely supplied by sensory and autonomic nerve fibers
- Sensory nerves (the vast majority) come from the ophthalmic division of the trigeminal
 - Posses both sensory and efferent functions
 - Mechanical, thermal and chemical stimulation usually is perceived as pain

Autonomic Nerve Fibers in Cornea

- Sympathetic fibers from the superior cervical ganglion
- Parasympathetic fibers from the ciliary ganglion
- Corneal sensation is essential for maintaining the integrity of the ocular surface

What Does it Look Like?

- 70-90 nerve bundles enter the cornea at the level of the mid stroma (in all clock hours)
- Run anteriorly toward the central cornea
- Form plexiform arrangements
- Form a dense subepithelial plexus and penetrate Bowman’s membrane
 - Largest concentration of perforation sites in the mid periphery
 - Form a whirl like pattern in the central cornea (clockwise)
Corneal Sensitivity Changes

- Age considerations
- Contact lenses
- Ocular surface disease
- Previous infections

Insensitive Old People

- Corneal sensitivity decreases with age
 - Explain decreased tear production
 - When elderly complain of significant pain it should be taken seriously

Contacts

- Decrease corneal sensitivity
 - Decrease tear production
 - Sensory adaptation to mechanical abrasion
Dry Eye

• The king of chronic eye pain

Corneal Nerve Structure and Function in Patients With Non-Sjögren Dry Eye: Clinical Correlations

• Mean corneal sensitivity was significantly lower in the NSDD group as compared with the control group ($P = 0.014$).

• NSDD patients have both structural and functional alterations of subbasal corneal nerves and these changes are related to the severity of dry eye.

• Antoine Labbé1 2013 ARVO

The Relationship between Subbasal Nerve Morphology and Corneal Sensation in Ocular Surface Disease

• Corneal sensitivity was significantly decreased in dry-eye and glaucoma patients compared with controls. The density and number of subbasal corneal nerves were also significantly decreased in dry eye and glaucoma patients compared with controls.

• Labbe 2012 IOVS
Neuropathy is end stage organ damage

- Diabetics know this first hand
- All diabetics get dry eye, few complain about it.

What’s Happening in Dry Eye

- Sensory nerves may adapt to irritation by decreasing the frequency and intensity of action potentials
- With time this elevates pain threshold, and stronger stimuli is needed to evoke corneal sensation for basal and reflex tearing
- Corneal hypoesthesia likely plays a role in the pathogenesis of tear deficiency

The Other Edge of the Sword

- Long term exposure to low levels of prostaglandins from dry eye sensitize the receptors for pain
How do we attack this?

- Indirectly go after the immune modulation in the lacrimal gland
- What if we could directly address the nerve issue in the cornea?
 - How can we do this?

Refractive Surgery Considerations

- Do more nerves enter the cornea nasally?

- Initially several studies showed that nasal or superior LASIK flaps had no effect on corneal sensation

- Transient light sensitivity syndrome
Unilateral Herpes Zoster Ophthalmicus Results in Bilateral Corneal Nerve Alteration: An In Vivo Confocal Microscopy Study

- Patients with unilateral HZO demonstrated a profound and significant bilateral loss of the corneal nerve plexus as compared with controls, demonstrating bilateral changes in a clinically unilateral disease. Loss of corneal sensation strongly correlated with subbasal nerve plexus alterations as shown by IVCM.
- Hamrah - Ophthalmology 2012

Ciliary Body and Pain

- Pain receptors diffusely distributed
 - Localization very difficult
 - Similar to sinus pain
- Light sensitivity

Classification of Uveitis

- Anatomical / structural location
- Etiology
- Acute vs. Chronic
- Non-granulomatous vs. Granulomatous
- Unilateral vs. Bilateral
Clinical Signs

- VA
- Conjunctiva
- Cornea
- Anterior chamber
- Iris
- Pupil
- IOP
- Lens
- Vitreous
- Disc edema
- Macular edema
- Periphlebitis

Posterior Segment Pain

- Neovascular glaucoma
- Ocular ischemic syndrome
- Optic neuritis
- Posterior uveitis
- Pars planitis

21 Year Old AA Female
What About IOP?

- Angle closure
- Postoperative
- High IOP in non-seeing eyes

Best Drug

Topical Route

- Direct drug delivery
 - Higher concentrations
- Minimize or eliminate systemic side effects
Topical Pain Control
Anesthetics (not long term analgesics)

- Tetracaine
 - 10-20 min
- Benoxinate
 - Only in combos
 - 10-20 min
- Proparacaine
 - Diet Tetracaine
 - Poor penetration
 - VERY LITTLE CROSS SENSITIVITY TO TETRACAINE AND BENOXINATE

Corticosteroids

- Longer onset of action due to full system shut down
- Inflammation resolution tends to mirror analgesic effect
- Some tissues are not that prone to swelling

Early- and Late-Phase Inflammatory Mediators

- Mast Cell
 - Membrane Phospholipids
 - Histamine
 - Leukotrienes
 - Prostaglandins

- Phospholipase A₂ Activity
 - Arachidonic Acid

- Cyclic Endoperoxides
 - Prostacyclin (PGI₂)

- Hydroperoxides (5-HPETE)

- Leukotrienes (LTB₄, LTD₄, LTE₄, LTB₅)

- Thromboxane (TXA₂)

- TRYPTASE, CHYMASE

- PROTEASES

Corticosteroids

- Will control prostaglandins and leukotrienes
- STOPS THE INFLAMMATION CASCADE
- Suppresses inflammation
- Allows for reestablishment of the neural feedback loop

Steroid Efficacy

- Difluprednate > Prednisolone > Loteprednol > Dexamethasone > Fluorometholone

Percent of Subjects with Clearing of Anterior Chamber Cells (Grade 0 defined as ≤1 cell)
Mean Change from Baseline in Total Symptom Score*

*DThe total symptom score was the sum of pain/ocular discomfort, photophobia, blurred vision, and lacrimation. Each symptom was graded using a visual analogue scale that ranged from 0-100. Patients were asked to assess these symptoms by using a mark on a 100 mm line where 0 = absent, 100 = maximal.

Immunosuppression

NSAIDS

- Act peripherally - avoid CNS
- Very good pain control
- Low dose - analgesic
- High dose - anti-inflammatory
Most Feared Side Effect?

NSAIDS

- Very Safe
- Most of ophthalmology is still caught up in the hysteria of the generic voltaren saga.
- Diclofenac Paranoia

NSAIDS

- Inhibit prostaglandin synthesis
 - 1. irreversible inactivation of COX
 - 2. reversible competitive inhibition
 - Reversible non-competitive inhibition ("free radical trappin")
Unmanageable Pain and Photophobia with Steroids

NSAIDS

- The most underutilized drug class in optometry

Relative IC\(_{50}\)s: Rank - Order Greatest to Least Activity

<table>
<thead>
<tr>
<th>Cyclo-oxygenase 2 (COX-2)</th>
<th>IC(_{50}) ((\mu)m)</th>
<th>Relative Potency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromfenac</td>
<td>0.0075</td>
<td>4.10 X</td>
</tr>
<tr>
<td>Amfenac</td>
<td>0.0204</td>
<td>1.50 X</td>
</tr>
<tr>
<td>Ketorolac</td>
<td>0.0279</td>
<td>1.10 X</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>0.0307</td>
<td>1.00 X</td>
</tr>
</tbody>
</table>

Ogawa, Senju. Accepted ASCRS 2007

Indications for Topical NSAIDs

<table>
<thead>
<tr>
<th>Indication</th>
<th>Diclofenac 9.5%</th>
<th>Ketorolac 20%</th>
<th>Ketoprofen 0.4%</th>
<th>Naproxen 1.6%</th>
<th>Bromfenac 5.6%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-inflammatory</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>Oral Pain</td>
<td>✅</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-refractive Oral Pain</td>
<td>✅</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raneophtholides</td>
<td>✅</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral itching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemorrhoidal Bleeding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All else fails

- Pressure patch
 - Corneal pain

Acetaminophen

- #1 stunner (mild to moderate pain)
- We have no idea how it works (probably CNS effects)
- No real GI effects
- Additive with other pain meds
- No cross reactions
- Not associated with Reye's syndrome (kids dying from NSAIDS)
Aspirin

• The Original NSAID
• Anticoagulant
• No mood altering effect
• Irreversibly acetylating COX
 – Most others are reversible competitive inhibitors
 – Watch asthma patients

NSAIDS

• All NSAIDS can cause GI problems and gastric bleeding all high/long term dosages

NSAIDS

• Studies have shown NSAIDS to have same analgesic effect as narcotics
 – Some studies show better pain control than morphine (what?.........)
• Almost all have a ceiling effect
Not all COX are the same

- COX-1
 - Constitutive variant
 - Mucus production and renal blood flow
- COX-2
 - Inducible
 - Sensitizes nociceptors

NSAIDS

- Have cross sensitivities with aspirin, ibuprofen, and other NSAIDS
- Can delay wound healing

Opioids
Opioids

• Best drug for severe acute pain
• Not used nearly enough by ODs
• Most are addictive and patients can develop tolerance
 – Addiction very unlikely with short term use
• Start all at q 4-6h
• All are compared to morphine for efficacy and potency

Opioids

• No ceiling effect

• Sympathomimetic - miosis, blurred vision, diplopia

Codeine

• Available with acetaminophen
• Most commonly used
• Works in 20 min, peaks at 2 hours
• The Greece of opioids
 – Less toxicity
 – Less addiction potential
 – Less sedation and constipation
Hydrocodone

- With acetaminophen (Vicodin, Lortab)
- 6X more potent than codeine with less sedation and constipation

Oxycodone

- Available with acetaminophen (Percocet)
- 10X effective than codeine
- Less side effects than codeine
- Higher addiction potential

Ultram (tramadol hydrochloride)

- Moderate to severe pain
- Non-narcotic opioid receptor agonist
- Pregnancy Category C
- 50-100mg q4-6 hours
- Side effects
 - Hallucinations
 - Fever
 - Nausea and vomiting
 - Seizure
 - Skin rash
 - Shallow breathing, weak pulse
Neurontin

- Recently failed study for ocular pain control after PRK (JCRS)
- Used for suppressing exaggerated pain and seizures

Non-Narcotics

- Skin patches
 - Lidocaine
 - Capsaicin
- Anticonvulsants
 - Lyrica
 - Neurontin
 - Tegretol
- Antidepressants
 - Cymbalta

Ciliary Spasm

- What about orals?
- Indirect control of pain
- Central nervous control works better than sight specific in the oral class
 - Opioids
Ciliary Spasm - Don’t Pressure Patch

Controlling Ciliary Spasm

- Limit light
- Decrease inflammation
- Steroids and NSAIDS
- Mydriasis (blocks acetylcholine)
 - Cycloplegia does not equate to mydriasis
 - How often do we use Atropine/homatropine?

Don’t Forget the Cycloplegics

- Comfort
- Break synechiae
- Stabilize blood-aqueous barrier
Cycloplegic Agents

<table>
<thead>
<tr>
<th>Drug</th>
<th>Max Effect (min)</th>
<th>Duration of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tropicamide 0.5, 1%</td>
<td>20-30</td>
<td>3-4 hours</td>
</tr>
<tr>
<td>Cyclopentolate 1, 2%</td>
<td>20-45</td>
<td>1 day</td>
</tr>
<tr>
<td>Homatropine 2, 5%</td>
<td>20-90</td>
<td>2-3 days</td>
</tr>
<tr>
<td>Scopolamine 0.25%</td>
<td>20-45</td>
<td>4-7 days</td>
</tr>
<tr>
<td>Atropine 0.5, 1%, 2%</td>
<td>30-40</td>
<td>1-2 weeks</td>
</tr>
</tbody>
</table>

Non-Therapeutic Treatments

- Hot compress
- Sunglasses / Hats
- Stay indoors
- Low lighting
- Plus for near
- Patching

Ciliary Spasm Tip

- Have patient look down and touch upper eyelid to assess pain
3rd Nerve Palsy
• Can be extremely painful
• Start with NSAIDS

Bandage Contact Lens
• Not used nearly enough
• Filamentary or severe punctate keratitis
• Allows a bridge for re-epithelialization and establishment of a normal glycocalyx

Diagnostic Approach
• Complete history, including contact lens use
• Presenting symptoms
• Physical examination
 – Slit Lamp exam
 • Signs
 • Rule out viral/fungal infections
 • Pay attention to the details
Corneal Infection

• Be careful of adding cycloplegic
 – Pain will indicate success of therapy

• Eyelid edema great indicator of infectious etiology

Chronic Pain

• Many types

• Often a chemical or physiological imbalance (not just Mucho Dolor Syndrome)

• We all see it on a daily basis
High IOP in Non-seeing Eyes

• Cyclo-cryo ablation
• Retrobulbar alcohol injection

Vaccines for HZO - Zostivax

• Zostivax is live attenuated herpes zoster (HZ) virus
 – 50% reduction in the incidence of HZ
 – 60% reduction in symptom severity in patients who developed HZ
 – 66.5% reduction in postherpetic neuralgia.

• Must have chicken pox as a child
• May help patients who’ve had HZO already

Thank you